Kehua Tech’s SPI4167K-B-HUD central inverter fully compatible with 600W+ solar modules

Facebook
Twitter
LinkedIn
Reddit
Email
Kehua’s latest 4.167MW (SPI4167K-B-HUD) 1500V central inverter is intended to improve the system efficiency by more than 1% and reduce the LCOE cost by over 5%, according to the company. Image: Kehua Tech

Kehua Tech’s latest 4.167MW central inverter solution, the SPI4167K-B-HUD comes with a unique power range and multiple technical innovations to be fully compatible with the new era of large-area high-performance PV modules that can exceed 660W. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The new era of large-area high-performance PV modules are expected to deliver in the range of 32% more power than the module classes in 500W range. Larger power supply brings further potential for higher sub-array power density and lower Levelised Cost of Electricity (LCOE), with the application of larger sub-array capacity seen as an inevitable trend. However, larger sub-arrays need larger capacity inverters, transformers, distribution units and other system devices.

The larger sub-array design matching with inverters with higher power density will need to effectively reduce the consumption and installation cost of inverters, cables, distribution cabinets and other system devices to achieve meaningful LCOE reductions. Increasingly, inverters need to be ‘grid friendly’ with more renewables connected to grids, and provide greater response and reliability, while supporting Energy Storage Systems (ESS). 

Solution

Kehua’s latest 4.167MW (SPI4167K-B-HUD) 1500V central inverter is intended to improve the system efficiency by more than 1% and reduce BOS costs by over 5%, according to the company.

The inverter is based on full modularisation from devices to power units and adopts multi-channel MPPT design, allowing for flexible redundancy for different project environments, power station conditions and system capability. DC parallel connection ensures the continuous operation of devices and is claimed to increase the overall utilisation rate by 1%.

The central inverter solution incorporates a grid-friendly PV generation system with energy storage devices and reduces the impact of solar curtailment and self-consumption, high DC/AC over ratio and power fluctuations. Through a patented power grid transient analysis, the system handles the data support for refined scheduling of power stations in the future. Its unique intelligent wave-recording function enables fast fault location and saves 80% of fault recovery time, according to the company. 

Applications

Utility-scale PV power plants designed for the new era of large-area high-performance PV modules that can exceed 660W. 

Platform

The SPI4167-B-HUD patented independent dual refrigeration circuits ensure higher security and reliability as they isolate power devices from magnetic devices, effectively reducing any rise in temperature of key devices and improving system reliability and operation life.

The maximum 16.668MW large square matrix is claimed to reduce BOS costs by about 0.76c/watt, decrease DC line loss of the whole system by 50%, and increase system efficiency by more than 1%. Taking a 100MW power station as an example, Kehua Tech says it can generate an extra 1.5 million kWh annually, based on an electricity fee of 0.046 US$/kWh, the cumulative economic benefits can be increased by US$1.9 million over 25 years.

Up to a 2.5 capacity ratio is supported. With the increase of capacity ratio, the power variation of the PV power station decreases synchronously, allowing it to provide smoother and more stable power delivery and greater grid-friendliness.

Availability

Fourth quarter of 2020, onwards. 

The 4.167MW central inverter solution realizes full modularization from devices to power units and adopts multi-channel MPPT design, which allows for flexible redundancy design based on different project environments, power station conditions and system capability. Image: Kehua Tech

Read Next

July 15, 2025
Indian renewable energy company SAEL Industries is developing a 5GW solar cell and 5GW module manufacturing facility in Greater Noida, Uttar Pradesh.
July 15, 2025
Malaysian utility company Tenaga Nasional Berhad has officially launched a floating solar pilot project, which could help unlock 2.2GW of generation capacity.
July 15, 2025
Ingeteam has expanded its footprint in Australia by announcing it will supply the 243MWp Maryvale Solar and Energy Storage Project in New South Wales.
July 14, 2025
Australian renewables developer Edify Energy has submitted plans for a 300MWac solar-plus-storage site in Victoria to Australia’s Environment Protection and Biodiversity Conservation (EPBC) Act.
July 14, 2025
ACWA Power has signed power purchase agreements (PPAs) with Saudi Power Procurement Company (SPPC) for five solar PV projects in the country.
July 14, 2025
Elements Green has secured €80 million (US$93.5 million) in financing from Danish investment firm Copenhagen Infrastructure Partners (CIP).

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK