Sol Voltaics gallium arsenide nanomaterial to be low-cost ink process for solar cells

May 9, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

Start-up Sol Voltaics has unveiled ‘SolInk’, which is claimed to be an economical nanomaterial that promises to increase the efficiency of crystalline silicon or thin-film solar modules by up to 25% or more. Gallium arsenide nanowires are fabricated via a high-throughput process called ‘Aerotaxy’ invented by company founder and Lund University professor Lars Samuelson.

Problem

Gallium arsenide solar cells cost far more to produce than crystalline silicon or thin film cells, thereby confining the material to niche market segments.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

With SolInk, module manufacturers can make commercially feasible, high-efficiency gallium arsenide solar modules or multi-junction solar modules combining gallium arsenide and crystalline silicon. SolInk also enables light concentration without the use of optics or mechanical components. Nanowires need only cover a small portion of the surface area of a crystalline silicon or thin film solar cell to achieve substantially all of the benefits of adding gallium arsenide. Sol Voltaics researchers claim that indium phosphide nanowires covering just 12% of the substrate surface produced a solar cell with an efficiency of 13.8%. The results were certified by the Fraunhofer Institute. The phenomenon, called Wave Concentrated Photovoltaics, combined with the other advantages of gallium arsenide nanowires, leads to better performance for SolInk.

Applications

Crystalline silicon and thin-film solar cells.

Platform

Aerotaxy creates nanomaterials by suspending and mixing active materials in carrier gas streams. The active materials bond to form larger, uniform structures while in flight: nanowires are literally grown in air. In this way, Aerotaxy can generate tens of billions of nanowires per second on a continuous basis. The finished nanowires can be integrated into a solar panel or other products, or can be stored indefinitely.

Availability

Sol Voltaics anticipates producing functional solar cells with gallium arsenide nanowires for demonstration by the end of 2013. Commercial production is expected to begin in 2015 and move into volume production in 2016.

Read Next

Premium
January 12, 2026
December 2025 saw record solar generation in Australia's NEM, with rooftop and utility-scale solar surging, but pricing volatility persisted.
January 11, 2026
Yanara has selected Gamuda Australia as the project delivery partner for the early contractor involvement phase of the Mortlake Energy Hub in Victoria.
January 9, 2026
The Chinese Ministry of Finance and the Taxation Administration issued an adjustment of export rebate policies for solar PV products and other items.
January 9, 2026
China’s market supervision body has warned of monopoly risks in the plans to consolidate the country’s polysilicon sector.
Premium
January 9, 2026
PV Tech Premium spoke with Crux on the trends to look forward in 2026 in the clean energy transferable tax credit market.
January 9, 2026
The US has withdrawn from a number of UN climate organisations, including the Framework Convention on Climate Change, International Renewable Energy Agency (IRENA) and Intergovernmental Panel on Climate Change.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland