Sol Voltaics gallium arsenide nanomaterial to be low-cost ink process for solar cells

May 9, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

Start-up Sol Voltaics has unveiled ‘SolInk’, which is claimed to be an economical nanomaterial that promises to increase the efficiency of crystalline silicon or thin-film solar modules by up to 25% or more. Gallium arsenide nanowires are fabricated via a high-throughput process called ‘Aerotaxy’ invented by company founder and Lund University professor Lars Samuelson.

Problem

Gallium arsenide solar cells cost far more to produce than crystalline silicon or thin film cells, thereby confining the material to niche market segments.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

With SolInk, module manufacturers can make commercially feasible, high-efficiency gallium arsenide solar modules or multi-junction solar modules combining gallium arsenide and crystalline silicon. SolInk also enables light concentration without the use of optics or mechanical components. Nanowires need only cover a small portion of the surface area of a crystalline silicon or thin film solar cell to achieve substantially all of the benefits of adding gallium arsenide. Sol Voltaics researchers claim that indium phosphide nanowires covering just 12% of the substrate surface produced a solar cell with an efficiency of 13.8%. The results were certified by the Fraunhofer Institute. The phenomenon, called Wave Concentrated Photovoltaics, combined with the other advantages of gallium arsenide nanowires, leads to better performance for SolInk.

Applications

Crystalline silicon and thin-film solar cells.

Platform

Aerotaxy creates nanomaterials by suspending and mixing active materials in carrier gas streams. The active materials bond to form larger, uniform structures while in flight: nanowires are literally grown in air. In this way, Aerotaxy can generate tens of billions of nanowires per second on a continuous basis. The finished nanowires can be integrated into a solar panel or other products, or can be stored indefinitely.

Availability

Sol Voltaics anticipates producing functional solar cells with gallium arsenide nanowires for demonstration by the end of 2013. Commercial production is expected to begin in 2015 and move into volume production in 2016.

Read Next

February 6, 2026
Chinese solar PV inverter and energy storage manufacturer Sungrow has expanded its manufacturing outreach with a new facility in southwestern Poland.
February 6, 2026
Chinese solar PV manufacturer Aiko Solar will license a raft of solar cell technology patents from Singapore-based manufacturer Maxeon.
February 6, 2026
Spanish independent power producer (IPP) has energised the fourth phase of its flagship solar-plus-storage project in Chile, Oasis de Atacama.
February 6, 2026
Lithuanian independent power producer (IPP) Green Genius has commenced operations of its 120.8MW solar project in Jekabpils region, Latvia.
February 6, 2026
GameChange Solar is to supply its Genius trackers for the 1.2GW Bisha Solar PV Independent Power Plant in Saudi Arabia.
February 6, 2026
The Australian government has launched a formal inquiry into the reuse and recycling of solar modules across the country.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA