Soltec’s SF8 single-axis tracker system is designed for new large-area solar panel era

Facebook
Twitter
LinkedIn
Reddit
Email
The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance. Image: Soltec

Soltec has launched its next-generation ‘SF8’ single-axis tracker system to meet the needs of utility-scale PV power plants adopting the new wave of large-area solar panels.

The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Problem

The rapid transition in the upstream manufacturing solar sector to significantly larger modules to provide lower cost per-Watt means a new era for the industry in higher module performance and a leap in reducing PV power plants levelised cost of electricity (LCOE) in a rapidly changing downstream market that becomes subsidy free, bidding orientated and targeting grid parity and beyond. To cater for these developments single-axis tracker systems used in utility-scale PV power plants need to be redesigned, provide further yield gains and meet demanding safety needs for potential wind related issues.

Solution

The new SF8 tracker reinforces its structure to facilitate installation and favors high performance on any terrain. A reinforced torque tube with a new, improved geometry, together with an autonomous self-stow system, contribute to increased tracker resistance to adverse weather conditions. In addition, the SF8 tracker increases the rigidity of its structure by 22% more than the previous generation of Soltec trackers, the SF7.

The SF8 has 5.16% fewer parts per module than the previous generation of Soltec trackers, thus reducing costs while improving installation efficiency. Each SF8 tracker is equipped with, at least, four strings, contributing to ease electrical module connections. Due to these innovations, the SF8 allows for easier and quicker installation, favoring enhanced return on investment and reduced installation and maintenance costs.

The SF8 tracker is claimed to allow up to 8.6% more power generation when bifacial modules are installed. With the ‘TeamTrack’ system, Soltec claims the SF8 is capable of enabling 6% more energy yield. The improved and adapted algorithm for bifacial modules, achieves an extra yield of up to 0.5%, according to the company. This extra bifacial gain adds to the 2.1% gain yielded in comparison to 1-in-portrait configuration trackers, according to the company.

Applications

The tracker system is specially designed for larger 72 and 78-cell modules (including bifacial modules) for utility-scale PV power plants.

Platform

The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance. With a multidrive transmission system within the tracker structure and supersized torque-tube with improved geometry is designed to provide the highest resilience to wind conditions. There are two or more drives per tracker with better angle accuracy and wind reliability. 'Dy-WIND' design methodology is used comprehensively. Completely autonomous tracker electronics ensures the most secure position for given wind episodes. A new full-wireless system allows complete plant and inter-tracker connection. The ‘Open Thread’ system developed by Google contributes to improved plant protection and to preventing damages by accurately anticipating weather conditions.

Availability

September 2020, onwards.

17 June 2025
Napa, USA
PV Tech has been running PV ModuleTech Conferences since 2017. PV ModuleTech USA, on 17-18 June 2025, will be our fourth PV ModulelTech conference dedicated to the U.S. utility scale solar sector. The event will gather the key stakeholders from solar developers, solar asset owners and investors, PV manufacturing, policy-making and and all interested downstream channels and third-party entities. The goal is simple: to map out the PV module supply channels to the U.S. out to 2026 and beyond.

Read Next

April 29, 2025
Chinese solar manufacturing giant JinkoSolar posted net losses of US$181.7 million in the first quarter of 2025 amid low product prices and “changes in international trade policies.”
Premium
April 29, 2025
“There is an adjustment in the industry [where] there are cycles,” explains Laura Fortes, senior manager for access to finance at GOGLA.
April 29, 2025
Solar cannot be regarded as a 'set and forget' technology and must be fully maintained to prevent systemic underperformance.
April 29, 2025
Spanish inverter manufacturer Ingeteam has secured a contract from Danish developer European Energy to supply its technology to two solar PV power plants in Australia, totalling an installed generation capacity of 137MW.
April 28, 2025
Acciona Energía has completed the construction of a 308MW solar PV power plant near the coastal city of Gladstone in Queensland, Australia.
April 24, 2025
Lee Zhang of Sungrow reveals how the company's new inverter meets the needs of the rapidly evolving solar and storage industries.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK