Soltec’s SF8 single-axis tracker system is designed for new large-area solar panel era

Facebook
Twitter
LinkedIn
Reddit
Email
The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance. Image: Soltec

Soltec has launched its next-generation ‘SF8’ single-axis tracker system to meet the needs of utility-scale PV power plants adopting the new wave of large-area solar panels.

The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Problem

The rapid transition in the upstream manufacturing solar sector to significantly larger modules to provide lower cost per-Watt means a new era for the industry in higher module performance and a leap in reducing PV power plants levelised cost of electricity (LCOE) in a rapidly changing downstream market that becomes subsidy free, bidding orientated and targeting grid parity and beyond. To cater for these developments single-axis tracker systems used in utility-scale PV power plants need to be redesigned, provide further yield gains and meet demanding safety needs for potential wind related issues.

Solution

The new SF8 tracker reinforces its structure to facilitate installation and favors high performance on any terrain. A reinforced torque tube with a new, improved geometry, together with an autonomous self-stow system, contribute to increased tracker resistance to adverse weather conditions. In addition, the SF8 tracker increases the rigidity of its structure by 22% more than the previous generation of Soltec trackers, the SF7.

The SF8 has 5.16% fewer parts per module than the previous generation of Soltec trackers, thus reducing costs while improving installation efficiency. Each SF8 tracker is equipped with, at least, four strings, contributing to ease electrical module connections. Due to these innovations, the SF8 allows for easier and quicker installation, favoring enhanced return on investment and reduced installation and maintenance costs.

The SF8 tracker is claimed to allow up to 8.6% more power generation when bifacial modules are installed. With the ‘TeamTrack’ system, Soltec claims the SF8 is capable of enabling 6% more energy yield. The improved and adapted algorithm for bifacial modules, achieves an extra yield of up to 0.5%, according to the company. This extra bifacial gain adds to the 2.1% gain yielded in comparison to 1-in-portrait configuration trackers, according to the company.

Applications

The tracker system is specially designed for larger 72 and 78-cell modules (including bifacial modules) for utility-scale PV power plants.

Platform

The SF8’s 4 to 6 strings, 2 x 60 minimum configuration is designed to reduce installation and maintenance costs, yield more energy and increase overall PV plant performance. With a multidrive transmission system within the tracker structure and supersized torque-tube with improved geometry is designed to provide the highest resilience to wind conditions. There are two or more drives per tracker with better angle accuracy and wind reliability. 'Dy-WIND' design methodology is used comprehensively. Completely autonomous tracker electronics ensures the most secure position for given wind episodes. A new full-wireless system allows complete plant and inter-tracker connection. The ‘Open Thread’ system developed by Google contributes to improved plant protection and to preventing damages by accurately anticipating weather conditions.

Availability

September 2020, onwards.

Read Next

August 8, 2025
This week several solar developers have raised funds for projects around the world, including BRUC in Europe, Greenalia in the US, Qair in Mauritius and CREC in Philippines.
August 8, 2025
German renewable energy developer ib vogt has officially broken ground on a 99MWp solar PV power plant in South Cotabato, the Philippines.
August 7, 2025
US-based floating solar (FPV) developer D3Energy is constructing a 6MW floating solar system in Monroeville – a village in Huron County, Ohio. 
August 7, 2025
Infinity Power has signed two concession agreements with the Government of Côte d'Ivoire for PV projects with a total capacity of 80MWac.
Premium
August 7, 2025
July 2025, the peak of the Australian winter season, saw generation from utility-scale and rooftop solar increase by 12.78% year-on-year in the National Electricity Market (NEM).
August 7, 2025
Despite severe flooding in the Waiotahe Valley in New Zealand, Lodestone Energy has confirmed that its 42MW Te Herenga o Te Rā solar PV power plant has continued operations.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines