Tongwei Solar shingled modules offer high efficiencies and reliable, clean power generation at competitive costs

By PV Tech
September 8, 2022
Facebook
Twitter
LinkedIn
Reddit
Email
Tongwei’s Solar shingled modules can now reach 670W and its efficiency has been enhanced to 21.6%. Image: Tongwei.

PV Tech and Tongwei Solar are co-hosting a webinar exploring the company’s shingled modules and the advantages they bring to projects. To register for the webinar, which takes place at 3:00 PM (BST) on 18 October, please click here.

Product Outline:

Tongwei Solar’s shingled modules, built on 210 cells, are based on the company’s innovative patented shingled technology, forming flexible interconnects and a unique internal circuitry, enabling higher efficiencies and better power generation performance. The maximum power of a single module can now reach 670W and efficiency has been enhanced to 21.6%.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Problem:

  1. With the rapid development of renewable energy sources around the world, land resources available for projects are becoming increasingly scarce. This requires PV systems to maximise power generation and efficiency in order to achieve maximum return on investment from each project.
  2. During module operation, the risk of hot-spots not only affects power output, but also causes safety risks, potentially reducing module durability.
  3. The solder ribbons inside the modules contain lead, which can cause environmental pollution.

Solution:

  1. In comparison to other module BOS costs, Tongwei’s shingled modules feature higher power. Their utilisation of bracket, pipe pile and cabling is higher, resulting in a reduction in construction cost per watt of a power station and, logically, lower levels of investment.
  2. Compared to conventional modules, shingled modules involve a cell cut into strips. The technology results in both string current within the module and the risk of hot-spots being lower.
  3. Shingled modules use shingled bonding technology instead of connection via solder ribbons, so lead content is also significantly reduced.  Testing has shown that Tongwei’s shingled modules are resistant to extreme weather conditions and perform better under shading, resulting in extended working life and service condition.

Application: Household, commercial and industrial and centralised systems.

Availability: Currently available.

Read Next

Premium
February 13, 2026
PV Talk: Charith Konda, energy specialist at IEEFA, says India’s 2026-27 budget aims to “establish a stronger supply chain within the solar and PV cell and module sector,” but warns that “execution is as important as the policy itself.”
February 13, 2026
The US Treasury’s interim Foreign Entity of Concern (FEOC) guidance is “in line with expectations” according to a US renewable energy supply analyst.
February 10, 2026
Boviet Solar has affirmed its commitment to US solar PV manufacturing despite plans by its parent company to divest its ownership.
February 9, 2026
The US federal government has withdrawn its appeal against a US Court of International Trade (CIT) ruling to retroactively collect two years of tariffs on imported solar panels.
February 9, 2026
Solar manufacturer United Solar has launched a polysilicon manufacturing facility in Oman, adding 100,000 metric tons of annual production capacity.
February 6, 2026
Chinese solar PV manufacturer Aiko Solar will license a raft of solar cell technology patents from Singapore-based manufacturer Maxeon.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA