TRUMPF’s TruMicro Series ultra-short pulse lasers offer improved thin-film edge ablation

February 21, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

TRUMPF’s TruMicro Series of ultra-short pulse lasers are claimed to be lowering the manufacturing cost of photovoltaic cells as well as enhancing their performance. The small and compact TRUMPF TruMicro Series 3000 with wavelengths of 1064 and 532 nanometres are designed for P1, P2 and P3 patterning. Thanks to their high pulse-to-pulse stability, these diode-pumped solid-state lasers achieve very good processing results. They can also be easily integrated into existing systems because of their advanced cooling design.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The patterning of thin-film cells made from Cu (In, Ga) (S,Se)2, or CI(G)S, presents a particularly high challenge for the laser process.  The same applies to the structuring of molybdenum. For this application, nanosecond lasers are still used but picosecond lasers are claimed to offer a far better solution. Maximising cell efficiency is the result of extremely precise and fine surface structuring and these lasers do this far better and more cost effectively than alternative processes. To protect thin-film solar modules against unfavourable environmental influences – especially against moisture – a width of approximately 10mm of the layer system is ablated along the edge and covered with laminated film. The traditional method employed is sandblasting but TRUMPF TruMicro lasers are claimed to provide a far more suitable process.

Solution

In the production of solar modules from amorphous silicon (aSi) or cadmium telluride (CdTe), conductive and photoactive films are deposited on large substrate areas, such as glass.  After every deposition, the laser subdivides the surface so that the cells created are automatically switched in series by the process sequence. In this way cell and module tensions, depending on the cell width, can be set. With these lasers, the material is ablated with ultra-short pulses without significant heating of the process edge zone. This prevents cracking, melting and exfoliation of the layers. TRUMPF Series 5000 picosecond lasers are ideal for this task. They have a wavelength of 1030nm for structuring molybdenum and 515nm for processing photoactive material and patterning the front of the contact. The transparent conductive oxides are usually processed with lasers in the infrared wavelength. At typical feed rates, repetition rates of over 100kHz result. An optimised pulse-to-pulse overlap makes for a clean kerf and minimises negative heat effects. The TruMicro 7050 is recommended for edge deletion applications which can process large areas at production speed, reliably and securely. It generates pulses with 30 nanoseconds duration at an average power of 750W.

Applications

P1, P2 and P3 patterning as well as edge deletion and other process steps.

Platform

TRUMPF TruMicro picosecond lasers have output power up to 50W, which significantly reduces process costs. The simple scalability of the laser output enables a higher production capacity to be achieved. The high beam quality in the ultra-short pulses significantly improves solar cells efficiency. This will result in a significant reduction of the ‘per Watt’ cost of solar cell performance in the future.

Availability

Currently available.

Read Next

Premium
November 7, 2025
The increasing technical complexity of the renewable energy space has increased the demands on capital raising for those in the sector.
November 7, 2025
JA Solar has signed a module supply agreement with EPC contractor Larsen & Toubro (L&T) for two utility-scale projects in Uzbekistan. 
November 7, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, secured solar PV module orders worth INR2.99 billion (US$33.7 million). 
November 7, 2025
The US Geological Survey (USGS) has released the 2025 List of Critical Minerals, which includes silicon and tellurium.
November 7, 2025
Members of the European Parliament are urging the European Commission to restrict Chinese solar inverter manufacturers’ access to the bloc’s energy infrastructure, due to cybersecurity concerns.
November 7, 2025
Renewables asset fund Alantra Solar has secured €355 million to support the development and construction of five solar PV projects in Italy.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal