EPFL and CSEM use evaporation process to boost mono c-Si tandem perovskite cell to record efficiency

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email
Using an evaporation method to form an inorganic porous base layer that fully covers the pyramids was developed, enabling it to retain the liquid organic solution that is then added via spin-coating. Image: EPFL and CSEM

Researchers at EPFL’s Photovoltaics Laboratory and the CSEM PV-center have reported a record tandem junction solar cell with conversion efficiencies of 25.2%, using a standard monocrystalline cell and an evaporation and spin-on process to fully coat the structure. 

EPFL and CSEM claim the simple manufacturing technique could be directly integrated into existing production lines, and the cell conversion efficiency could eventually rise above 30%, according to new modelling.

In tandem cells, perovskite complements silicon cells as it converts blue and green light more efficiently, while silicon based cells are better at converting red and infra-red light. 

“By combining the two materials, we can maximize the use of the solar spectrum and increase the amount of power generated. The calculations and work we have done show that a 30% efficiency should soon be possible,” say the study’s main authors Florent Sahli and Jérémie Werner, which was published in the technical journal, Nature. 

“Silicon’s surface consists of a series of pyramids measuring around 5 microns, which trap light and prevent it from being reflected. However, the surface texture makes it hard to deposit a homogeneous film of perovskite,” explains Quentin Jeangros, who co-authored the paper.

Typically, perovskite materials on their own have been deposited on small test glass plates in a liquid form, then spin coated for uniformity. However, when deposited on a conventional cell, which has a textured surface the material accumulates in the valleys between the pyramids while leaving the peaks uncovered, which lowers efficiency and creates short circuits, according to the new study.

Using an evaporation method to form an inorganic porous base layer that fully covers the pyramids was developed, enabling it to retain the liquid organic solution that is then added via spin-coating. 

The substrate is heated to a relatively low temperature of 150°C to crystallize a homogeneous film of perovskite on top of the silicon pyramids, providing a uniform coating and elimination of material accumulation in the pyramid valleys. 

“We are proposing to use equipment that is already in use, just adding a few specific stages. Manufacturers won’t be adopting a whole new solar technology, but simply updating the production lines they are already using for silicon-based cells,” explains Christophe Ballif, head of EPFL’s Photovoltaics Laboratory and CSEM’s PV-Center.

Read Next

March 30, 2021
Researchers at the Massachusetts Institute of Technology (MIT) have found a new approach to identifying long-lasting perovskite formulation, opening the door for further studies that could support the US’ solar manufacturing sector.
March 12, 2021
LONGi Solar is planning to build a new 5GW high-efficiency monocrystalline solar cell plant in Yinchuan, China.
March 3, 2021
Major polysilicon and solar cell producer Tongwei Group has begun ramping the final cell lines at its 15GW Meishen production hub in Sichuan Province, with the facility now the largest single site for solar production in the world.
February 10, 2021
As the technology continues to mature, the race to successfully commercialise and drive heterojunction (HJT) manufacturing to the multi-gigawatt level is getting increasingly competitive. PV Tech spoke to Jinergy chief executive officer Liyou Yang to determine what the remaining challenges are in relation to mass HJT manufacturing, and how close the industry may be to it.
February 9, 2021
Major ‘Solar Module Super League’ (SMSL) member JinkoSolar has extended its supply chain cooperation with major polysilicon and merchant solar cell manufacturer Tongwei Group, with Tongwei gaining extra gigawatts of mono wafers from JinkoSolar.
February 4, 2021
Fraunhofer ISE spin-off NexWafe has raised €10 million in a new Series B round of funding as the company moves to another pilot production phase.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Upcoming Webinars
April 28, 2021
4:00 - 4:30 PM CET