Imec pushes perovskite tandem silicon mini-module to record 23.9% conversion efficiency

Facebook
Twitter
LinkedIn
Reddit
Email
Several new engineering tricks were used to boost the tandem mini-module to 23.9% conversion efficiencies, which included a better engineered perovskite material (CsFAPbIBr), an anti-reflection texturing process on the surface of the module as well as depositing a higher (air, 1.44) refractive index matching liquid between the perovskite module and IBC silicon cell. Image: imec

Nanoelectronics research centre imec has taken a perovskite/silicon tandem mini-module-on-cell stack to a record 23.9% conversion efficiency, significantly exceeding its 20.2% efficiency figures reported in 2016. 

In 2016, imec used a semi-transparent perovskite mini-module, which was developed in collaboration with Solliance that was stacked on top of a high-efficiency interdigitated back-contact (IBC) crystalline silicon solar cell in a four-terminal tandem configuration with an aperture area of 4cm2 to produce 20.2% conversion efficiency.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Several new engineering tricks were used to boost the tandem mini-module to 23.9% conversion efficiencies, which included a better engineered perovskite material (CsFAPbIBr), an anti-reflection texturing process on the surface of the module as well as depositing a higher (air, 1.44) refractive index matching liquid between the perovskite module and IBC silicon cell.

“Two innovations are key to this achievement,” explained Tom Aernouts, group leader for thin-film photovoltaics at imec and perovskite PV program manager at Solliance. “First, a different perovskite material (CsFAPbIBr) was used, largely improving the stability and conversion efficiency of the 4cm² semi-transparent perovskite module to 15.3 percent. Second, the architecture of the stack was optimized for minimal optical losses by adding an anti-reflection texture on top of the module and a refractive index matching liquid between the perovskite module and the Si solar cell.”

Imec noted that the four-terminal tandem mini-module had matched aperture areas as large as 4cm2 for the perovskite module and the Si solar cell.

“Having matched areas of this size makes the fabrication technology more attractive to the solar cell industry,” added Aernouts. “For reference, we have also fabricated a stack of a small perovskite cell (0.13cm2) on top of an IBC c-Si cell (4cm2). In this configuration, the power conversion efficiency of the small semi-transparent perovskite cell is 16.7 percent, outperforming the larger 4cm2 perovskite module due to better perovskite layer properties. Although less attractive from an industrial point of view, the overall power conversion efficiency of this cell-on-cell stack is as high as 25.3 percent.”

Imec believes that by stacking the perovskite solar cells or modules on top of silicon solar cells is a key route to eventual commercialisation of perovskite material options with power conversion efficiencies potentially above 30% with the opportunity to be relatively low cost for tandem cell roadmaps.

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

April 29, 2025
Chinese solar manufacturing giant JinkoSolar posted net losses of US$181.7 million in the first quarter of 2025 amid low product prices and “changes in international trade policies.”
April 28, 2025
Fraunhofer ISE has developed a solar cell which uses “one-tenth” of the amount of silver as a standard cell.
April 28, 2025
Beleaguered Norwegian silicon producer REC Silicon has received a buyout offer from its largest shareholder, Hanwha Corporation.
April 24, 2025
US material recovery firm OnePlanet has closed two financing deals to aid the development of a solar module recycling facility in Florida.
Premium
April 23, 2025
Analysis: Carrie Xiao explores the factors behind the recent cancellation of China’s PV module mega-tender and their wider implications for equipment procurement.
April 22, 2025
The US Department of Commerce has issued anti-dumping and anti-subsidy tariffs on solar cell imports from Southeast Asia.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK