LONGi Solar’s Hi-MO 5 Series module offers gallium-doped wafers and ‘Smart Soldering’ for 540Wp

June 29, 2020
Facebook
Twitter
LinkedIn
Reddit
Email
The new Hi-MO 5 Series offers up to 540Wp performance with gallium-doped, newly defined M10 (182mm x 182mm) wafers, half-cut monocrystalline PERC (Passivated Emitter Rear Cell) cells and 9BB (busbar) ‘Smart Soldering’ cell interconnect technology. Image: LONGi Solar

LONGi Solar has introduced its next-generation series of large-area high-performance modules for utility-scale PV power plant markets globally. The new Hi-MO 5 Series offers up to 540Wp performance with gallium-doped, newly defined M10 (182mm x 182mm) wafers, half-cut monocrystalline PERC (Passivated Emitter Rear Cell) cells and 9BB (busbar) ‘Smart Soldering’ cell interconnect technology. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

In the era of grid parity and project bidding, PV module performance is rapidly expanding to provide significant levelised cost of energy (LCOE) and balance of system (BOS) cost reductions. As a result, large-area wafers, coupled to innovations at the cell and module level, need to be compatible with PV inverters and tracker systems, notably for bifacial systems. However, the idea that the larger the module size, the better, is questionable for various real world and practical reasons.

Solution

Hi-MO 5 modules deploy gallium-doped M10 (182mm) wafers, which provide better security against LID (Light Induced Degradation) with stable, long-term power generation. LONGi’s proprietary ‘Smart Soldering” technology uses integrated segmented ribbons. The triangular ribbon design maximises light trapping, while the flat section reliably connects cells with reduced spacing. As a result, the Smart Soldering technology reduces the tensile stress of the cell by around 20%, as the cell interconnect gap is reduced to approximately 0.6mm, compared to standard spacing of around 2.0mm. This leads to improved packing density, reliability, and conversion efficiency. Compared to LONGi’s existing Hi-MO 4 module series, the increase in module power can be attributed to the increase in the Isc (short circuit current), while the Voc (open circuit voltage) is unchanged at approximately 13A, enabling the module to operate correctly with the current range of advanced 15A PV inverters, negating potential power losses. The power in one string is significantly improved, resulting in a reduction in BOS cost. Overall, with front-side power up to 540W, 21.1% conversion efficiency and module size of 2,256mm ×1,133mm, Hi-MO 5 provides the best-in-class BOS and LCOE for large scale PV power plants, according to the company. 

Applications

Hi-MO 5 (72-cell) is designed to provide the lowest LCOE for utility-scale PV power plants. Hi-MO 5 also has an option for a 66-cell type layout (up to 495W). The lower Voc and shorter module length broaden applications for this product option.

Platform

The Hi-MO 5 Series modules are constructed in a double glass with frame format and maintain the traditional 6 row design in the 72C layout. The module dimensions are proposed at 2,256mm x 1,133mm. The height of the shipping container limits the module width to about 1.13m. The length of the 72-cell Hi-MO 5, at about 2.25m, is also compatible with many racking systems available on the market from 1P to 2P designs. The dual glass bifacial module has increased load capacity and is qualified for 5400Pa static load on the frontside when there is no crossbeam used on the backside of the module, avoiding shading losses. With the gallium-doped cells, Hi-MO 5 offers increased attenuation and power performance and long-term reliability. The 1st year power warranty is an industry-leading 98% and linear annual attenuation is within 0.45%. Concurrently, Hi-MO 4 continues as a current product in LONGi’s portfolio. Hi-MO 4 is best suited for applications in residential, C&I rooftops and power plants. Hi-MO 4 and Hi-MO 5 will co-exist in LONGi’s product lineup.

Availability

Hi-MO 5 will be produced in volume and receive IEC/UL certification in September 2020. LONGi Solar’s production capacity for Hi-MO 5 will reach 12GW at the end of 2020. First shipments will be supplied to utility-scale PV power plants. Hi-MO 5 entered volume production on 8th September, 2020.

LONGi’s proprietary ‘Smart Soldering” technology uses integrated segmented ribbons. The triangular ribbon design maximizes light trapping, while the flat section reliably connects cells with reduced spacing. Image: LONGi Solar
Hi-MO 5 entered volume production on 8th September, 2020.

Read Next

November 10, 2025
Pine Gate Renewables has filed for Chapter 11 bankruptcy to pursue a court-supervised sale of its solar and energy storage portfolio, along with its independent power producer (IPP) platform.  
November 10, 2025
EDF Renewables, in partnership with SPIC HHDC and SAPCO, has secured financing for the 400MW solar PV projects in Saudi Arabia.
November 10, 2025
Indian independent power producer (IPP) ReNew Power has secured US$331 million from the Asian Development Bank (ADB) for its solar plant in the Southern state of Andhra Pradesh. 
November 10, 2025
The Australian Renewable Energy Agency (ARENA) will invest up to AU$45 million (US$29 million) in Fortescue's Solar Innovation Hub in the Pilbara region of Western Australia.
November 10, 2025
The Australian government has approved the 300MW Dunmore solar-plus-storage project near Toowoomba, Queensland, completing the environmental assessment process in just 19 days.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal