New research suggests use of ortho-carboranes in perovskite solar cells could improve efficiency to 27.2%

Facebook
Twitter
LinkedIn
Reddit
Email
city u perovskite
Cells containing ortho-carborane retained 80% of their original power conversion efficiency after being subjected to temperatures of 85 degrees Celsius for 1,080 hours. Credit: City University of Hong Kong

New research into mixed tin-lead perovskite solar cells has demonstrated the effectiveness of using carboranes to regulate cell temperature, which could drive the power conversion efficiency of such cells from 26.1% to 27.2%.

The study, ‘Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells,” was completed by researchers at the Qingdao University of Science and Technology in China and the University of Toronto in Canada. The researchers, led by Shuchen Tan of Qingao University’s College of Chemistry and Molecular Engineering, focused on optimising the function of tin-lead tandem perovskites in the performance of solar cells.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

However, the researchers note that, historically, such compounds have “poor thermal conductivity,” making them unsuitable for use in processes where components are exposed to considerable amounts of heat, such as solar cell functions. The team tested the use of carbon-boron molecules, known as carboranes, and specifically ortho-carborane, which is often used in heat-resistant polymers, which helped transfer heat away from the perovskite layer of the solar cell.

This process reduced the average temperature recorded in the cell by five degrees Celsius. After being subjected to 85 degrees Celsius heat for 1.5 seconds, a control perovskite cell recorded a temperature no higher than 30 degrees Celsius. However, after 120 seconds subjected to such heat, a cell without the ortho-carborane addition showed temperatures as high as 35 degrees Celsius, while parts of the perovskite later, with the ortho-carborane, were as cool as 29 degrees Celsius.

The researchers note that cells containing ortho-carborane retained 80% of their original power conversion efficiency after being subjected to temperatures of 85 degrees Celsius for 1,080 hours. These cells also retained 87% of their original power conversion efficiency after operating under this heat for 704 hours.

The news follows other research into cells and temperatures, with researchers from the University of New South Wales earlier this month finding that tunnel oxide passivated contact (TOPCon) solar modules endured “significant degradation” in damp heat environment testing.

11 March 2025
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.
7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

February 11, 2025
New manufacturing capacity additions from Gautam Solar and Waaree, alongside Indian solar deployments crossing the 100GW threshold.
February 7, 2025
TP Solar, a subsidiary of Tata Power, has commissioned a 4.3GW cell and module manufacturing facility in the state of Tamil Nadu.
February 5, 2025
Researchers from the Helmholtz-Zentrum Berlin (HZB) and Humboldt University Berlin have achieved an efficiency of 24.6% with a copper indium gallium selenide (CIGS) and perovskite tandem solar cell.
January 31, 2025
JA Solar has unveiled its DeepBlue 5.0 series of modules, its latest n-type tunnel oxide passivated contact (TOPCon) product.
January 8, 2025
Chinese solar manufacturer Trinasolar has set a 25.44% module efficiency record with a solar total passivation (TOPAS) heterojunction (HJT) PV module.
January 8, 2025
Indian solar module manufacturer Waaree Energies has started trial production at its 5.4GW cell production facility in Chikhli, Gujarat.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
February 17, 2025
London, UK
Solar Media Events
February 19, 2025
Tokyo, Japan
Solar Media Events
March 11, 2025
Frankfurt, Germany