Siemens new Gas Chromatograph optimizes polysilicon quality and output

December 9, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Siemens has introduced a new Gas Chromatograph (GC) that can be used in the very demanding polysilicon production process. The MAXUM II PGC will help to maximize the polysilicon output to ensure stable and high quality material, minimizing off-spec products.  This results in significant cost reductions with a typical return of investment of less than one year for a typical plant, according to the company.

Problem

The challenging polysilicon production process with its extremely high product quality requirements along with the difficult- to-handle Trichlorosilane (TCS)  substance require advanced analysis techniques to reliably control safe and correct operation of the process as well as product quality. Typically, laboratory gas chromatographs are used to perform offline analysis of complex mixtures of Chlorosilanes which requires manual sampling, transportation to the laboratory as well as manual sample preparation resulting in certain drawbacks.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

The MAXUM II PGC is directly connected to the process and can be installed within hazardous areas. They have a very short analysis time, typically 5 to 10 minutes and a high availability, in excess of 98%.  Each measurement cycle generates reliable results for the key components such as DCS, TCS, STC, HCl and H2. Every MAXUM PGC is able to monitor several sampling points by automatic stream selection, either successively or even simultaneously. The process data is continuously fed into the DCS either through analogue outputs or serial / Ethernet communication, enabling the plant to run in the most optimized and efficient way. It also eliminates the need for disconnecting and connecting sample cylinders, exposing it to ambient air and risk of contamination.

Applications

Polysilicon production plants.

Platform

Multiple oven options (airless, airbath, single, double), different detector types (TCD, FID, FPD, HID, ECD), various valve and column switching techniques as well as different column types (capillary, micro-packed, packed). Special detectors can trace components like BCl3, PCl3, hydrocarbons, CO, CO2, and N2 can be detected at ppb levels, e.g. in recycle gases.

Availability

Currently available.

Read Next

December 30, 2025
The PV Review, 2025: Three companies have made headlines for their efforts, and failures, to produce polysilicon in the US this year.
December 30, 2025
Greenwood Energy has reached financial close for the first phase of its 52MWp Terra Site I solar project in Colombia.
December 30, 2025
CHN Energy has started full commercial operations at the 1GW HG14 floating PV (FPV) project off the coast of Dongying in China.
December 30, 2025
Fortis Energy has begun the construction phase of the 75MW Ersekë solar PV project in Albania, which is co-located with a BESS.
December 29, 2025
Mexico has awarded 3.3GW of renewable energy capacity, of which solar PV will account for 2.6GW of capacity.
Premium
December 29, 2025
PV Tech spoke with accountancy firm Baker Tilly about the new safe harbour and 'start of construction' rules for US solar projects.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland