NREL and CSEM set multi-junction III–V/Si solar cell efficiency record

Facebook
Twitter
LinkedIn
Reddit
Email
The perennial problem for GaAs (III–V) based solar cells has been the production costs and the dominance of crystalline silicon as the solar substrate of choice.

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the Swiss Center for Electronics and Microtechnology (CSEM), and the École Polytechnique Fédérale de Lausanne (EPFL) have reported dual-junction and triple-junction cell efficiency gains.

In testing silicon-based multijunction solar cells, researchers have found that the highest dual-junction efficiency (32.8%) came from a tandem cell that stacked a layer of gallium arsenide (GaAs) developed by NREL atop a film of crystalline silicon developed by CSEM. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

An efficiency of 32.5% was achieved using a gallium indium phosphide (GaInP) top cell, while a third cell, consisting of a GaInP/GaAs tandem cell stacked on a silicon bottom cell, reached a triple-junction efficiency of 35.9%—just 2% below the overall triple-junction record.

Stephanie Essig, a former NREL post-doctoral researcher now working at EPFL in Switzerland, is lead author of the newly published research that details the steps taken to improve the efficiency of the multijunction cell. While at NREL, Essig co-authored “Realization of GaInP/Si Dual-Junction Solar Cells with 29.8% 1-Sun Efficiency,” which was published in the IEEE Journal of Photovoltaics a year ago.

In addition to Essig, authors of the new research paper are Timothy Remo, John F. Geisz, Myles A. Steiner, David L. Young, Kelsey Horowitz, Michael Woodhouse, and Adele Tamboli, all with NREL; and Christophe Allebe, Loris Barraud, Antoine Descoeudres, Matthieu Despeisse, and Christophe Ballif, all from CSEM.

“This achievement is significant because it shows, for the first time, that silicon-based tandem cells can provide efficiencies competing with more expensive multijunction cells consisting entirely of III-V materials,” Tamboli said. “It opens the door to develop entirely new multijunction solar cell materials and architectures.”

The perennial problem for GaAs (III–V) based solar cells has been the production costs and the dominance of crystalline silicon as the solar substrate of choice.

However, the researchers believe that production costs of tandem cells on silicon can become commercially viable in the future. 

The researchers assumed a 30% cell efficiency of a GaInP-based cell would cost US$4.85 per watt today and a GaAs-based cell would cost US$7.15 per watt. But as manufacturing ramps up and the efficiencies of these types of cells increased to around the 35% mark, the researchers estimated that the cost per watt could fall to 66 US cents for a GaInP-based cell and to 85 cents for the GaAs-based cell. 

Read Next

August 11, 2025
The US Department of Commerce has initiated antidumping duty and countervailing duty investigations of crystalline silicon PV cells, whether or not assembled into modules from India, Indonesia, and Laos.
August 6, 2025
The Indian Ministry of New and Renewable Energy (MNRE) has published the approved list of models and manufacturers (ALMM) for solar cells, which contains 13GW of annual nameplate capacity across six manufacturers.
July 23, 2025
Australian solar PV module manufacturer Tindo Solar has partnered with UNSW to advance tunnel oxide passivated contact (TOPCon) technology.
July 21, 2025
The CEC has awarded a US$4 million grant to perovskite developer Tandem PV to test its perovskite-silicon tandem solar panels.
Premium
July 2, 2025
ANALYSIS: China's leading PV manufacturers are locked in a new round of competition, aiming to outpace each other through record-breaking feats.
June 26, 2025
International researchers led by King Abdullah University of Science and Technology (KAUST) have developed a new cooling technology that improves the power and longevity of solar cells.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines