Fraunhofer ISE develops adhesives for industrial production of shingle cell modules

Facebook
Twitter
LinkedIn
Reddit
Email
The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The high efficiency of modules with shingle cells and their aesthetic appearance are currently driving demand on the market. However, shingle cells cannot be soldered by conventional methods, due to mechanical stresses. Only through the adhesive technology that reliable and robust shingle strings can be produced.

Solution

Electrically conductive bonding of shingled cells on the industrial stringers can be used with specially developed adhesives. The adhesive can compensate for the thermal expansion of the module glass at changing ambient temperatures and is also lead-free. The stringer from teamtechnik Maschinen und Anlagen GmbH applies the electrically conductive adhesive using the screen printing process and interconnects the cell strips with high precision. 

Applications

With the narrow cell strips different module formats can be realized, which creates a lot of scope for specific applications. Currently, the experts at Fraunhofer ISE are working on optimizing the amount of adhesive and cell design as well as on the development of new fields of application.

Platform

By shingling, cell gaps are avoided, so that the module surface can be used maximally for the generation of energy and a homogeneous, aesthetic overall picture is created. Compared to conventional solar modules, the higher module efficiency results on the one hand from the larger active module area and have no shading losses due to overlying cell connectors. The resistance losses are lower by lower currents in the cell strips. These cell-to-module losses and gains can be achieved with the software tool SmartCalc.CTM of the Fraunhofer ISE.

Availability

Currently available. 

Read Next

May 20, 2025
Changes to tax credits under the Inflation Reduction Act (IRA) could “jeopardise” nearly 300 US solar and energy storage manufacturing facilities, according to trade body the Solar Energy Industries Association (SEIA).
May 20, 2025
'We’re here because you do it really well, and we want to learn from you,' Abigail Ross Hopper, CEO of SEIA, told PV Tech Premium.
Premium
May 20, 2025
PV Talk: At this year’s Intersolar event SEIA's Abigail Ross Hopper said a 'universal effort' would be needed for the energy transition
May 15, 2025
Indian solar module manufacturer Vikram Solar has signed a 326.6MW module supply agreement with Gujarat State Electricity Corporation Limited (GSECL) for the Khavda Solar park in Gujarat.
May 15, 2025
Solar manufacturer Canadian Solar recorded a slight increase in module shipments and endured losses in Q1 amid 'geopolitical complexities.'
May 14, 2025
US energy officials have found unexplained communication equipment inside some Chinese-made inverter devices.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia