Fraunhofer ISE develops adhesives for industrial production of shingle cell modules

March 11, 2019
Facebook
Twitter
LinkedIn
Reddit
Email
The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The high efficiency of modules with shingle cells and their aesthetic appearance are currently driving demand on the market. However, shingle cells cannot be soldered by conventional methods, due to mechanical stresses. Only through the adhesive technology that reliable and robust shingle strings can be produced.

Solution

Electrically conductive bonding of shingled cells on the industrial stringers can be used with specially developed adhesives. The adhesive can compensate for the thermal expansion of the module glass at changing ambient temperatures and is also lead-free. The stringer from teamtechnik Maschinen und Anlagen GmbH applies the electrically conductive adhesive using the screen printing process and interconnects the cell strips with high precision. 

Applications

With the narrow cell strips different module formats can be realized, which creates a lot of scope for specific applications. Currently, the experts at Fraunhofer ISE are working on optimizing the amount of adhesive and cell design as well as on the development of new fields of application.

Platform

By shingling, cell gaps are avoided, so that the module surface can be used maximally for the generation of energy and a homogeneous, aesthetic overall picture is created. Compared to conventional solar modules, the higher module efficiency results on the one hand from the larger active module area and have no shading losses due to overlying cell connectors. The resistance losses are lower by lower currents in the cell strips. These cell-to-module losses and gains can be achieved with the software tool SmartCalc.CTM of the Fraunhofer ISE.

Availability

Currently available. 

Read Next

Premium
November 12, 2025
PV Talk: Stefano N. Granata of STS discusses the growing momentum behind back contact cell technology as manufacturers and investors embrace higher-efficiency solutions.
November 12, 2025
The European Bank for Reconstruction and Development (EBRD) has increased its equity stake in Infinity by US$40 million.
November 11, 2025
During a week marked by significant developments, ACME Solar and Reliance NU Energies win SJVN tenders while Emmvee launches IPO.
November 11, 2025
Hassan Allam Utilities Energy Platform and Infinity Power have signed agreements to develop two renewable energy projects in the country. 
November 10, 2025
Pine Gate Renewables has filed for Chapter 11 bankruptcy to pursue a court-supervised sale of its solar and energy storage portfolio, along with its independent power producer (IPP) platform.  
November 10, 2025
EDF Renewables, in partnership with SPIC HHDC and SAPCO, has secured financing for the 400MW solar PV projects in Saudi Arabia.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal