Fraunhofer ISE develops adhesives for industrial production of shingle cell modules

Facebook
Twitter
LinkedIn
Reddit
Email
The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The high efficiency of modules with shingle cells and their aesthetic appearance are currently driving demand on the market. However, shingle cells cannot be soldered by conventional methods, due to mechanical stresses. Only through the adhesive technology that reliable and robust shingle strings can be produced.

Solution

Electrically conductive bonding of shingled cells on the industrial stringers can be used with specially developed adhesives. The adhesive can compensate for the thermal expansion of the module glass at changing ambient temperatures and is also lead-free. The stringer from teamtechnik Maschinen und Anlagen GmbH applies the electrically conductive adhesive using the screen printing process and interconnects the cell strips with high precision. 

Applications

With the narrow cell strips different module formats can be realized, which creates a lot of scope for specific applications. Currently, the experts at Fraunhofer ISE are working on optimizing the amount of adhesive and cell design as well as on the development of new fields of application.

Platform

By shingling, cell gaps are avoided, so that the module surface can be used maximally for the generation of energy and a homogeneous, aesthetic overall picture is created. Compared to conventional solar modules, the higher module efficiency results on the one hand from the larger active module area and have no shading losses due to overlying cell connectors. The resistance losses are lower by lower currents in the cell strips. These cell-to-module losses and gains can be achieved with the software tool SmartCalc.CTM of the Fraunhofer ISE.

Availability

Currently available. 

8 October 2024
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 8-9 October 2024 is our second PV CellTech conference dedicated to the U.S. manufacturing sector. The event in 2023 was a sell out success and 2024 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.
26 November 2024
Málaga, Spain
Understanding PV module supply to the European market in 2025. PV ModuleTech Europe 2024 is a two-day conference that tackles these challenges directly, with an agenda that addresses all aspects of module supplier selection; product availability, technology offerings, traceability of supply-chain, factory auditing, module testing and reliability, and company bankability.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 1, 2024
Dallas, Texas
Solar Media Events
May 21, 2024
Sydney, Australia