UNSW claims world-record efficiency for kesterite solar cell

January 28, 2025
Facebook
Twitter
LinkedIn
Reddit
Email
The world-record breaking kesterite solar cell. Image: UNSW.

Engineers at Australia’s University of New South Wales (UNSW) have claimed to have achieved a new world record for photovoltaic efficiency using high-bandgap kesterite solar cells (CZTS).

The university revealed earlier today (28 January) that scientia professor Xiaojing Hao and the team from UNSW’s School of Photovoltaic and Renewable Energy Engineering have achieved a best-ever efficiency of 13.2% for high-bandgap kesterite solar cells enhanced with hydrogen.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Kesterite, used to create CZTS, is a naturally occurring mineral that can be artificially created at low cost by combining copper, zinc, tin and sulphur. This also helps to create non-toxic solar cells.

Previous research has shown that kesterite material fulfils the prerequisites for high-efficiency solar cells. CZTS technology is able to maintain its photovoltaic performance over a longer period of time and has been touted as a potential improvement for silicon-based PV technology.

Despite its potential, CZTS efficiency has been long hampered, largely by the number of defects created during production, which the UNSW researchers said is hard to avoid. The researchers helped to solve this problem by annealing – also known as heat-treating – the CZTS solar cell device in an atmosphere that contains hydrogen.

“Silicon modules have almost reached the limit of their theoretical efficiency, so what we are trying to do is answer the question coming from the PV industry as to what the next generation of cells will be made of,” Hao said.

“And as well as that, how can we make solar panels less expensive to manufacture, and how can we get more electricity per area so the panels can be particularly beneficial for area-limited PV applications?”

Hao added that the research is aiming to improve the efficiency of solar PV modules and help generate greener and cheaper renewable electricity.

Hydrogen helps solve CTZS defects

Readers of PV Tech may be aware that the efficiency of CZTS has remained around the 11% mark for several years. The introduction of hydrogen into the production method has helped achieve this record efficiency and could form the foundation of future research efforts.

“In basic terms, to create CZTS, you take copper, tin, zinc and sulphur and ‘cook’ them all together at a certain temperature, which turns it into a material you can use as a semiconductor,” Hao said.

“Because hydrogen is modulating the defects within CZTS, that’s what helps increase its efficiency in terms of converting sunlight into electricity.”

Hao now hopes the breakthrough will aid researchers looking to boost CTZS efficiency and break the 15% threshold in the next year. The technology would then be commercialised by 2030.

Read Next

January 21, 2026
Bellevue Gold has claimed to have set a new benchmark for off-grid renewable energy performance at one of its gold mines.
January 20, 2026
The European Commission has released its proposal to revise its Cybersecurity Act (CSA), which includes provisions to exclude “high-risk” companies and components from European supply chains.
January 20, 2026
Radial Power has secured US$355 million from Goldman Sachs for 214MW of distributed solar across 106 projects nationwide.
January 20, 2026
INDIA ROUND-UP: Hartek Power, Waaree Energies, Kosol Energie and IREDA secured major solar and renewable energy deals, including EPC contracts, multi-gigawatt module orders, multi-billion-dollar investments, and international project financing.
January 20, 2026
CleanPeak Energy has completed the acquisition of five solar and battery energy storage system (BESS) development sites in New South Wales from Fortitude Renewables, adding 25MW of solar capacity and 100MWh of battery storage to its portfolio.
January 19, 2026
US solar firm SunPower has signed a letter of intent to acquire California-based residential and commercial installer Cobalt Power Systems in an all-equity transaction. 

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA