HeliosLite’s disruptive 1.5 axis PV tracker provides 31% more energy and bifacial ready

Facebook
Twitter
LinkedIn
Reddit
Email
This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to brings cost effective tracking to decentralized PV plants. Image: HeliosLite

HeliosLite has developed a disruptive PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness. This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to bring cost-effective tracking to decentralized PV plants. Field results attest to the energy boost versus fixed tilt and to the system’s robustness.  The open back design and maximum power tracking algorithm make HeliosLite’s 1.5 axis tracker a perfect match with bifacial modules. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Maximizing power output (MWh/MWp) drives lower the cost of energy and can bring even more value to projects with coupled to diesel generators, with variable feed-in tariffs or storage.  Dual axis trackers and inclined 1 axis trackers increase output with much lower power density (MWp/Hectare) but do not always decrease LCOE due to the marginal cost increase.  Furthermore, decentralized PV plants and difficult project sites do not have access to modular and cost-effective tracking solutions. 

Solution

HeliosLite has developed a PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness.  The self-powered controller includes a power sensor, battery back-up and wireless communication to enhance the solution’s simplicity and ruggedness.  The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai, HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two-fold. By producing more energy throughout the day, HeliosLite’s tracker allows developers to optimize the total PV system investment to achieve a lower cost of energy.

HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two fold. Image: HeliosLite

Applications

HeliosLite’s 1.5 axis PV tracker solution addresses market segments starting from 4 kWp to multi-MWp projects where maximum energy output counts most (off-grid, hybrid, solar pumps, rural electrification, self-consumption projects with or without storage) and where current 1 axis horizontal tracking solutions are less cost-effective or not suitable (slopes, landfills, sandy soils, uneven terrains, snow regions, temporary installations…). 

Platform

Wind tunnel tested and pre-certified under Eurocodes, each HeliosLite 1.5 axis tracker carries 12, 72 cell, PV panels driven independently or mechanically linked together in rows for a highly scalable tracking solution. The tilt angle can be optimized based on the project’s latitude by adjusting a single component. The system is said to be easy and quick to install without heavy lifting equipment. This movable tracker is compatible with multiple foundation solutions. Bifacial modules will be tested summer 2018.

Availability

Ready for delivery and can begin with benchmark trial projects from 24 kWp onwards.

The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai: Image HeliosLite

In September, HeliosLite and ‎Enerwhere will be conducting a webinar on increased energy output and reduced LCOE achieved by using 1.5 axis trackers vs fixed tilt based on 12 months of comparative data in Dubai, UAE. Register now.

Read Next

June 13, 2025
French independent power producer (IPP) Neoen Australia has confirmed that its 440MW Culcairn solar PV power plant in New South Wales has entered the commissioning phase.
June 12, 2025
Earthrise Energy has secured US$630 million for its 270MWac solar project in Gibson City Solar, Illinois.
June 12, 2025
US independent power producer (IPP) DESRI has begun construction on a 205MW/1,000MWh solar-plus-storage project in the state of Arizona.
June 12, 2025
New Zealand renewables developer Lodestone Energy has started constructing its first solar PV project on the country’s South Island, with a total generation capacity of 27.7MW.
June 11, 2025
A new report has claimed that creating a Sydney renewable energy zone (REZ) in New South Wales, Australia, could generate up to 21GW of renewable energy from rooftop solar PV.
June 11, 2025
Venn Energy, a renewable energy developer, has seen its 500MW Cooba solar-plus-storage site selected for inclusion in Victoria’s Development Facilitation Program (DFP) scheme in Australia.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand