HeliosLite’s disruptive 1.5 axis PV tracker provides 31% more energy and bifacial ready

June 5, 2018
Facebook
Twitter
LinkedIn
Reddit
Email
This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to brings cost effective tracking to decentralized PV plants. Image: HeliosLite

HeliosLite has developed a disruptive PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness. This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to bring cost-effective tracking to decentralized PV plants. Field results attest to the energy boost versus fixed tilt and to the system’s robustness.  The open back design and maximum power tracking algorithm make HeliosLite’s 1.5 axis tracker a perfect match with bifacial modules. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Maximizing power output (MWh/MWp) drives lower the cost of energy and can bring even more value to projects with coupled to diesel generators, with variable feed-in tariffs or storage.  Dual axis trackers and inclined 1 axis trackers increase output with much lower power density (MWp/Hectare) but do not always decrease LCOE due to the marginal cost increase.  Furthermore, decentralized PV plants and difficult project sites do not have access to modular and cost-effective tracking solutions. 

Solution

HeliosLite has developed a PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness.  The self-powered controller includes a power sensor, battery back-up and wireless communication to enhance the solution’s simplicity and ruggedness.  The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai, HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two-fold. By producing more energy throughout the day, HeliosLite’s tracker allows developers to optimize the total PV system investment to achieve a lower cost of energy.

HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two fold. Image: HeliosLite

Applications

HeliosLite’s 1.5 axis PV tracker solution addresses market segments starting from 4 kWp to multi-MWp projects where maximum energy output counts most (off-grid, hybrid, solar pumps, rural electrification, self-consumption projects with or without storage) and where current 1 axis horizontal tracking solutions are less cost-effective or not suitable (slopes, landfills, sandy soils, uneven terrains, snow regions, temporary installations…). 

Platform

Wind tunnel tested and pre-certified under Eurocodes, each HeliosLite 1.5 axis tracker carries 12, 72 cell, PV panels driven independently or mechanically linked together in rows for a highly scalable tracking solution. The tilt angle can be optimized based on the project’s latitude by adjusting a single component. The system is said to be easy and quick to install without heavy lifting equipment. This movable tracker is compatible with multiple foundation solutions. Bifacial modules will be tested summer 2018.

Availability

Ready for delivery and can begin with benchmark trial projects from 24 kWp onwards.

The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai: Image HeliosLite

In September, HeliosLite and ‎Enerwhere will be conducting a webinar on increased energy output and reduced LCOE achieved by using 1.5 axis trackers vs fixed tilt based on 12 months of comparative data in Dubai, UAE. Register now.

Read Next

October 23, 2025
Solar PV technology has maintained its leading position as the most cost-competitive power generation source in 2025, according to analyst Wood Mackenzie.
October 23, 2025
Powerlink Queensland is seeking federal approval to expand its existing 330kV Bulli Creek Substation in Southern Queensland to accommodate the grid connection of Genex Power's 775MW Bulli Creek solar PV power plant.
October 22, 2025
The Queensland government has launched the Social Licence in Renewable Energy Toolkit, providing local councils in Australia with resources to navigate renewable energy project engagement and community consultation processes.
October 21, 2025
Australia's solar-plus-storage sector gained momentum with 725MW of solar PV approvals advancing across New South Wales and Queensland.
October 21, 2025
Luminous Robotics has successfully completed its first international deployment of AI-powered solar installation robots at Engie’s 250MW Goorambat East Solar Farm in Victoria, Australia.
October 21, 2025
An independent panel has granted resource consents for the 179MW Glorit Solar Farm in Auckland, New Zealand.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany