3D-Micromac’s ‘microCELL’ TLS solar cell cutting tool uses thermal laser separation

September 26, 2016
Facebook
Twitter
LinkedIn
Reddit
Email
3D-Micromac‘s microCELL TLS enables an ablation free process that its designed to provide the edge quality needed in volume manufacturing. Image: 3D-Micromac

3D-Micromac’s ‘microCELL’ TLS is a highly productive laser system for separation of standard silicon solar cells into half cells. The microCELL TLS meets cell manufacturers demands for retaining the mechanical strength of the cut cells.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The current solution for the growing industry demand for half cell solutions are conventional laser based scribe and break processes. Ablation is done through half of the cells thickness with subsequent mechanical cleaving. Such process is comparably slow, creates crystal dislocation and micro cracks that lowers the electrical and mechanical performance of the cells.

Solution

3D-Micromac‘s microCELL TLS enables an ablation free process that its designed to provide the edge quality needed in volume manufacturing. Laser processing on-the-fly and an innovative handling concept enable maximum throughput and yield for crystalline half cells. Simply by a laser induced temperature gradient, a crack is guided at up to 300mm/s through the cell. Without the usual ablation, no dust or crystal defects by re-molten silicon occur. The results are higher efficiency, higher mechanical strength and better performance in module aging tests at highly increased throughput.

Applications

High-volume production of solar cell cutting.

Platform

microCELL TLS can be installed as inline or stand-alone solution by cell and module manufacturers. The tool design allows easy access for operation and service at minimum footprint. One-pass contactless dicing process enables high throughput of > 3,800 wph on a single lane system. Options include a wafer buffer system, MES system and loading and unloading handling to customer specifications.

Availability

May 2016 onwards

Read Next

January 14, 2026
Solar dominated employment in the renewable energy sector in 2024, accounting for over 40% of the global renewables workforce, the most of any sector.
Premium
January 14, 2026
Analysis: As Eging PV comes under pressure to repay investment in an incomplete manufacturing facility, China’s solar manufacturers face an uphill struggle to put recent challenges behind them.
January 14, 2026
Australian start-up Stellar PV has released early details of the solar ingot and wafer facility it plans to build in the state of Queensland.
January 9, 2026
China’s market supervision body has warned of monopoly risks in the plans to consolidate the country’s polysilicon sector.
January 8, 2026
Solar manufacturing major Canadian Solar is looking to raise US$200 million in convertible senior note sales to support its US manufacturing operations
January 6, 2026
The Chinese government has released a range of policy measures to strengthen intellectual property (IP) protections in the country’s solar PV industry.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 3, 2026
Málaga, Spain