Australia: Transgrid to investigate three inland Renewable Energy Zones in western NSW

Facebook
Twitter
LinkedIn
Reddit
Email
Western NSW has been recognised as a region with “excellent solar resources”. Image: Transgrid.

Australian transmission system operator Transgrid has signaled in a new report that remote inland renewable energy zones (REZ) could provide additional renewable energy sources in the mid-2030s, with western New South Wales (NSW) identified as a region with “excellent potential”.

This year’s edition of Transgrid’s Transmission Planning Annual Report (TAPR) report details that the western portion of NSW has “excellent” solar and wind resources on under-utilised, low-density land. Developing smaller-scale remote REZs could help provide an influx of renewable energy generation and grid balancing services.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Readers of PV Tech will be well aware of the utility-scale REZ facilities being developed across Australia. The REZs are each deemed critical infrastructure projects, coupling transmission infrastructure with large-scale energy generation, such as solar PV and wind, alongside energy storage capabilities. The Energy Corporation of NSW (EnergyCo) describes them as the “modern-day equivalent of power stations”.

The NSW government is developing at least five separate multi-gigawatt REZ facilities connected to the grid and partially using long-duration energy storage (LDES) to replace traditional centralised power plants. The five REZs include the Hunter-Central Coast, the South-WestNew EnglandCentral-West Orana, and Illawarra.

Elsewhere, Queensland recently published a roadmap detailing how it would develop its 12 REZs. Victoria, on the other hand, has identified six REZ locations.

Remote inland REZs could be developed across several locations in NSW, including Broken Hill, Noona, and the Northwest Horizon regions. Transgrid said all of these regions have “some of the best” solar and wind resources readily available anywhere on the National Electricity Market (NEM).

It added that the organisation was actively exploring the viability of the inland REZs and developing multiple corridors from existing networks to connect them to the NEM.

Image: Transgrid.

REZ costs remain competitive

Another key report finding is that REZ costs remain competitive against alternative options. Transgrid added that opportunities to develop more complementary generation profiles, wholesale generation and excess storage costs could be offset by building additional transmission and strategically placed energy storage capabilities.

Developing diverse generation in inland REZs could also facilitate cost-effective asset buildout. According to the report, the Levelised Cost of Transmission (LCOT) may be lower due to longer transmission asset life, with potential cost reductions from smaller generators and reduced storage needs.

It should also be noted that land-use footprint will benefit from the inland REZ zones. 7.5GW of any future REZ capacity would need around 90,000 – 130,000 hectares, according to Transgrid’s analysis, which is of high value in existing regions.

The primary land use in remote inland REZ regions is mainly characterised by localised mining, private land use, pastoral activities, and lower concentration of agricultural activities.

Trasgrid argues that an approach that utilises remote inland REZs would allow for the optimal combination of renewable energy generation technologies in ideal locations. By leveraging the unique characteristics of various generation technologies, it would be possible to optimise the production, storage, and transmission of electricity, ultimately resulting in lower costs for consumers.

A portfolio approach would also involve connecting power generation sources with a variety of transmission infrastructure within a ‘meshed’ network topology. Meshed network topologies enhance system resilience, offering extra protection and ensuring continuity of service in the event of a grid disturbance.

This would be especially crucial in western NSW, where the current transmission infrastructure interconnection is minimal compared to the existing backbone network.

Read Next

September 12, 2025
Colombian energy supplier Celsia is seeking more than US$1.2 billion in investment to build wind and solar generation projects in Peru. 
September 12, 2025
ACME Venus Urja has secured INR3.8 billion (US$43 million) to develop and construct a solar-plus-storage project in Barmer, Rajasthan.
September 11, 2025
Founder Group has won a RM10 million (US$2.3 million) engineering, procurement, construction and commissioning contract for a 30MW solar plant in Malaysia.
September 11, 2025
Madison Energy Infrastructure has raised US$800 million to accelerate the deployment of clean energy assets across the US. 
September 11, 2025
Constant Energy has secured THB300 million (US$9.4 million) in green financing from HSBC to expand large-scale solar and battery storage projects in Thailand. 
September 11, 2025
Solar power generation in Central Europe has grown at more than twice the EU average rate since 2019, according to new figures.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines