LONGi leading Mono PERC cell technology development

Facebook
Twitter
LinkedIn
Reddit
Email

SPONSORED: As the largest monocrystalline silicon manufacturer, LONGi Group has been at the forefront of the development of monocrystalline silicon cell technologies. These technologies are not limited to the monofacial P-type PERC cells (such as LONGi's Hi-MO1), but also incorporate the innovative bifacial PERC cell (Hi-MO2), which will be discussed in detail in this article. 

The technology of Passivated Emitter and Rear Cells (PERC) originated from the 1990s and since then monocrystalline PERC has become increasingly popular due to its great efficiency. According to Taiwan based market research firm EnergyTrend, PERC capacity will reach 61GW and account for 44% of market share by 2020. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Based on research conducted by German institute ISFH, the efficiency of mass-produced monocrystalline P-type PERC cells could reach 24%, approaching that of those using HIT and IBC technology.

Currently, LONGi production P-type mono-facial PERC cell efficiency, as well as bifacial PERC cell front side efficiency, has reached 21.3% on average. The bifacial PERC cell rear side efficiency remains at 16%-16.5%, 75% of that of front side. Moreover, the power of the 60-cell conventional PERC module (glass/backsheet) reaches 312.1W, while the bifacial PERC module with double-glass lamination could produce 307W from the front side and 234.1W from the rear side.

In 2018, the production efficiency of monofacial PERC cells as well as bifacial cells will reach 21.6%. According to LONGi, PERC cell production efficiency will go up to 22% on the front side and 17.5% for the rear side by 2020.

Reference: Institute for Solar Energy Research in Hamelin (ISFH) IEEE Journal of Photovoltaics (Volume: PP, Issue: 99).

Bifacial PERC modules are known to utilize the reflected and diffuse light reaching the rear surface to generate electricity. However, a number of factors may interfere with the light arriving at the back side of the modules. We investigated the influence of various topographical characteristics and reflectivity on bifacial power gain. This reveals that the module (72-cell) power will reach up to 450W when the reflectivity value is 25%, as shown in Table 1, which verifies LONGi bifacial modules’ impressive photoelectric conversion performance.

According to our experimental data, the conventional Mono PERC module has demonstrated ~3% higher energy yield than a multi-crystalline module. This can be attributed to Mono PERC's lower temperature coefficient, lower operating temperature and better low light performance. In outdoor field testing, the rear side of bifacial PERC modules could generate 14.9% more power output than mono-facial modules with fixed mount. Additionally, the rear side of LONGi's Bifacial PERC module (Hi-MO2), combined with a tilted single-axis tracker, is capable of generating 21.4% more power output than multi-crystalline modules (also with tilted single-axis tracker).

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

March 12, 2025
Fraunhofer ISE research suggests that the average monocrystalline silicon PV module’s power output was 1.2% lower than its nominal capacity.
Premium
March 4, 2025
Canadian Solar and LONGi shared their perspectives on industry pricing, competition, and patent disputes at a recent event in China.
February 25, 2025
The deal follows the start of production at ES Foundry’s 3GW nameplate capacity manufacturing plant in January.
February 20, 2025
Risen said the cell was certified by the Chinese National Photovoltaic Product Quality Supervision and Inspection Center.
Premium
February 19, 2025
PV Talk: Alex Zhu, CEO of US-based solar cell manufacturer ES Foundry discusses why a heated litigation landscape led to a choice of PERC cell technology for the South Carolina factory, the fate of US tax credits and taking advantage of wafer surplus in southeast Asia.
February 18, 2025
Chinese solar manufacturer LONGi has filed a lawsuit in the US District Court for the Eastern District of Texas against Jinko Solar.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
March 19, 2025
12pm EST / 4pm GMT / 5pm CET
Solar Media Events
March 25, 2025
Lisbon, Portugal
Solar Media Events
March 26, 2025
Renaissance Dallas Addison Hotel, Dallas, Texas
Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas