Maxim’s analog IC integrated cell-string optimizer replaces bypass diode limitations

Share on facebook
Share on twitter
Share on linkedin
Share on reddit
Share on email
Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking. Image: Maxim

Maxim Integrated Products has introduced a new cell-string optimizer technology that allows PV panels to harvest significantly more energy and simplifies design complexity for solar installation projects, notably shade mitigation and eliminating hot-spots while minimizing the impact of overall power degradation mechanisms.


Unlike conventional bypass diodes, solar cell optimizers do not bypass weak cell strings. Using bypass diodes in solar a solar panel that experiences shading/soiling at any point within a string limits the maximum current rating to the lowest performing cell in the string.


Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking (MPPT) of the PV panel (from 6 to 24 cells). By replacing each diode (three) with a MPPT device, the on-off response to performance mismatch is eliminated; every cell-string contributes maximum power without interfering with the power production capability of others. This enhanced degree of flexibility leads to increased energy production; eliminating collateral performance loss due to module mismatch, degradation, soiling, localized shading, and row shading loss mechanisms. A PV system designer can reconfigure a system design to allow for more inter-row shading that is claimed to deliver 10 to 20% more energy density than a conventional system design. Effectively, the system can maintain the same kWh/kWp as a conventional system, but with higher ground coverage ratios. System designers can also accommodate differing string lengths, multiple orientations, and different module power levels.


PV module integrated replacement for bypass diodes.


Maxim solar cell optimizer works by boosting the current of the weak cells to match those of the stronger, eliminating the corresponding performance penalty of the conventional system. The solar cell optimizer’s MPPT function works alongside the string inverter MPPT, to ensure that the system output is optimal under any environmental conditions. The module includes three Maxim solar cell optimizers, which replace the three diodes found in a conventional module junction box.


September, 2016 onwards.

Read Next

April 28, 2021
Renewable energy group BayWa r.e. has opened what it claims is its largest PV warehouse in Europe yet in a bid to expand its distribution network in the continent.
PV Tech Premium
April 20, 2021
‘Solar Module Super League’ (SMSL) member Canadian Solar is planning to launch its first N-type heterojunction (HJ) PV modules in the second half of 2021, PV Tech can reveal.
April 14, 2021
Meyer Burger is on track to start shipments of its first heterojunction (HJ) solar modules made in Germany to distributors in July.
PV Tech Premium
April 12, 2021
Mark Osborne details how Solar Module Super League (SMSL) major JinkoSolar is transforming its manufacturing base, moving from an asset-lite model to one more vertically integrated.
April 8, 2021
US-based high-efficiency n-type monocrystalline Interdigitated Back Contact (IBC) PV manufacturing start-up Violet Power has insisted its plans to develop manufacturing capacity in the US remain on track despite the collapse of its strategic alliance with REC Silicon.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
May 26, 2021
Session 1 - 7:00 AM (BST) | Session 2 - 5:00 PM (BST)
Solar Media Events
June 15, 2021
Solar Media Events
July 6, 2021
Solar Media Events
August 24, 2021