Maxim’s analog IC integrated cell-string optimizer replaces bypass diode limitations

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email
Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking. Image: Maxim

Maxim Integrated Products has introduced a new cell-string optimizer technology that allows PV panels to harvest significantly more energy and simplifies design complexity for solar installation projects, notably shade mitigation and eliminating hot-spots while minimizing the impact of overall power degradation mechanisms.

Problem

Unlike conventional bypass diodes, solar cell optimizers do not bypass weak cell strings. Using bypass diodes in solar a solar panel that experiences shading/soiling at any point within a string limits the maximum current rating to the lowest performing cell in the string.

Solution

Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking (MPPT) of the PV panel (from 6 to 24 cells). By replacing each diode (three) with a MPPT device, the on-off response to performance mismatch is eliminated; every cell-string contributes maximum power without interfering with the power production capability of others. This enhanced degree of flexibility leads to increased energy production; eliminating collateral performance loss due to module mismatch, degradation, soiling, localized shading, and row shading loss mechanisms. A PV system designer can reconfigure a system design to allow for more inter-row shading that is claimed to deliver 10 to 20% more energy density than a conventional system design. Effectively, the system can maintain the same kWh/kWp as a conventional system, but with higher ground coverage ratios. System designers can also accommodate differing string lengths, multiple orientations, and different module power levels.

Applications

PV module integrated replacement for bypass diodes.

Platform

Maxim solar cell optimizer works by boosting the current of the weak cells to match those of the stronger, eliminating the corresponding performance penalty of the conventional system. The solar cell optimizer’s MPPT function works alongside the string inverter MPPT, to ensure that the system output is optimal under any environmental conditions. The module includes three Maxim solar cell optimizers, which replace the three diodes found in a conventional module junction box.

Availability

September, 2016 onwards.

Read Next

January 13, 2022
Reliance Industries has signed a Memorandum of Understanding (MoU) with the government of Gujarat for a total investment of INR5.955 lakh crore (US$80 billion) over 10-15 years to establish 100GW of renewables and set up green technology manufacturing facilities in the state.
January 10, 2022
The Australian Renewable Energy Agency (ARENA) is providing AU$40 million in funding to support research and development (R&D) that can help Australia reach its ‘ultra-low cost solar’ goal, recently added as a priority under the country’s decarbonisation strategy.
January 6, 2022
JinkoSolar has won a tender issued by the China Petroleum Engineering and Construction Corporation (CPECC), an affiliate company of the China National Petroleum Corporation (CNPC), for up to 1.85GW of high efficiency TOPCon modules
November 12, 2021
German conglomerate BayWa AG has witnessed “flourishing” sales of solar PV components take its renewables segment to new heights in the first nine months of 2021.
June 2, 2021
The first phase of GCL System Integration Technology's (GCL-SI) 60GW module factory in Hefei, in China’s Anhui Province, is on track to start production this September.
May 13, 2021
The solar module manufacturing subsidiary of Italian utility Enel is aiming to scale up annual production capacity to 3GW in the second half of 2023, the company has confirmed.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
January 26, 2022
Free Webinar
Solar Media Events
February 23, 2022
London, UK
Solar Media Events
March 8, 2022
London, UK
Solar Media Events
March 23, 2022
Austin, Texas, USA
Solar Media Events
March 29, 2022
Lisbon, Portugal