NREL: US utility-scale solar PV could be as cheap as US$16.89/MWh by 2030

Facebook
Twitter
LinkedIn
Reddit
Email
The Techren 2 sola project under construction in the US. Image: Nextracker

Utility-scale solar PV in the US could be as a cheap as US$16.89/MWh by the end of the decade, new analysis published by the National Renewable Energy Lab (NREL) has shown.

Research institute NREL has published its 2021 Annual Technology Baseline (ATB) report which provides electricity generation technology cost and performance data to inform the US electricity sector.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

It has highlighted how the levelised cost of energy (LCOE) in 2019 for utility-scale PV ranged from US$31.32/MWh for ‘class 1’ solar PV, effectively NREL’s most cost-effective class, to US$50.23/MWh for ‘class 10’.

It expects LCOEs to fall to between US$29.39/MWh and US$47.14/MWh for class 1 and class 10 projects this year, with a central ‘class 5’ estimate of US$35.98/MWh, before tumbling to between US$16.89/MWh and US$27.10/MWh by 2030.

While costs will continue to fall out to 2050, NREL’s analysis shows a levelling off of cost reductions. According to this year’s ATB, class 1 solar PV will be able to generate at US$15.06/MWh in 2040 and US$13.35/MWh by 2050. The below graph shows NREL’s cost trajectory for solar out to 2050, while also highlighting the narrowing of the differences in LCOE between class 1 and class 10 utility-scale solar PV over those years.

Utility-scale solar PV LCOE will continue to fall dramatically out to 2030, NREL’s analysis shows, before tailing off. Image: PV Tech.

The ATB collates current and projected data into one format for energy analysts, modelers and system planners. It is based on original projections for the renewable and storage technologies and scenarios for technologically-based innovation for fossil fuels.

“Comparisons of possible future power systems depend on assumptions and scenarios,” said Laura Vimmerstedt, NREL energy analyst and ATB project lead. “The ATB provides critical cost and performance assumptions for energy analysis, including studies at national labs and beyond.”

Read Next

July 2, 2025
Asset management firm Capital Dynamics has secured €110 million (US$129.4 million) in financing for three solar PV projects in Spain.
July 2, 2025
Investment manager Quinbrook Infrastructure Partners has begun commercial operations at a 373MW solar PV plant in the UK.
July 1, 2025
Spanish independent power producer (IPP) Zelestra has secured financing and reached financial close for its 220MW solar-plus-storage plant in Chile.
July 1, 2025
Swedish independent power producer (IPP) OX2 has begun operations at a 100MW solar PV plant in Poland, its first project as an IPP.
June 20, 2025
The Australian government has given the green light for a landowner-led 250MW solar-plus-storage project in Tasmania.
June 19, 2025
Spanish independent power producer (IPP) Sonnedix has launched Project Douro, a 150MW solar plant in Tarouca, northern Portugal.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK