Electroluminescence inspection system from Vitronic provides solar cell defect management

Facebook
Twitter
LinkedIn
Reddit
Email

Vitronic’s VINSPECsolar electroluminescence inspection system is designed to detect defects within solar cells that could influence electrical performance of the solar module. By using electroluminescence inspection, all defect areas are automatically detected, displayed and classified by relevant software before lamination, so that reworking can increase the module's efficiency. Archived electroluminescence images of the finished module also serve as proof of the delivered quality.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

In module production, cells, strings, matrices all the way to modules are subjected to mechanical and thermal stresses. Missing electrical connections or wrong wiring can also occur during soldering. In addition, the solar cells used could display quality deviations depending on where they were purchased.

Solution

The VINSPECsolar electroluminescence inspection system detects inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions. The inspections can be conducted on the solar cell string and solar cell matrix before or after lamination as well as on the finished module. This makes it possible for the module manufacturer to intervene and implement improvements before lamination, thereby optimizing the module's performance. A classification of the modules, based on the electroluminescence inspection, takes place after lamination and the images are saved as proof of the quality.

Applications

Detecting inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions.

Platform

The electroluminescence process involves stimulating the solar cell string or module with electricity. Special cameras require only about one second illumination time to capture the weak light emissions of the cell as an electroluminescent image. An automated image assessment, using specially-developed software methods (e.g. micro-crack detection) takes place in order to then displays the defect areas on a monitor. The image is displayed on monitors of e.g. 46'' in size and can also be made available to reworking stations. The frequency of the individual defect characteristics is recorded and evaluated using the integrated statistics function.

Availability

January 2012 onwards. 

Read Next

July 3, 2025
Malaysian engineering and infrastructure giant Gamuda has expanded its presence in the Australian renewables sector by partnering with Tasmanian landowners to build a 1.2GW portfolio, which includes solar PV.
July 2, 2025
A new state-owned green bank, the Energy Security Corporation (ESC), has launched in New South Wales, Australia, with an initial funding allocation of AU$1 billion (US$640 million).
July 2, 2025
Asset management firm Capital Dynamics has secured €110 million (US$129.4 million) in financing for three solar PV projects in Spain.
July 2, 2025
The US Senate has narrowly passed – with a 51-50 vote and with vice-president JD Vance breaking the tie – the reconciliation bill yesterday (1 July) without the solar and wind excise tax.
Premium
July 2, 2025
ANALYSIS: China's leading PV manufacturers are locked in a new round of competition, aiming to outpace each other through record-breaking feats.
July 2, 2025
Investment manager Quinbrook Infrastructure Partners has begun commercial operations at a 373MW solar PV plant in the UK.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK