Maxim’s analog IC integrated cell-string optimizer replaces bypass diode limitations

October 26, 2016
Facebook
Twitter
LinkedIn
Reddit
Email
Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking. Image: Maxim

Maxim Integrated Products has introduced a new cell-string optimizer technology that allows PV panels to harvest significantly more energy and simplifies design complexity for solar installation projects, notably shade mitigation and eliminating hot-spots while minimizing the impact of overall power degradation mechanisms.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Unlike conventional bypass diodes, solar cell optimizers do not bypass weak cell strings. Using bypass diodes in solar a solar panel that experiences shading/soiling at any point within a string limits the maximum current rating to the lowest performing cell in the string.

Solution

Maxim's cell-string optimizers are highly integrated DC-DC converters that replace the bypass diode and perform maximum power point tracking (MPPT) of the PV panel (from 6 to 24 cells). By replacing each diode (three) with a MPPT device, the on-off response to performance mismatch is eliminated; every cell-string contributes maximum power without interfering with the power production capability of others. This enhanced degree of flexibility leads to increased energy production; eliminating collateral performance loss due to module mismatch, degradation, soiling, localized shading, and row shading loss mechanisms. A PV system designer can reconfigure a system design to allow for more inter-row shading that is claimed to deliver 10 to 20% more energy density than a conventional system design. Effectively, the system can maintain the same kWh/kWp as a conventional system, but with higher ground coverage ratios. System designers can also accommodate differing string lengths, multiple orientations, and different module power levels.

Applications

PV module integrated replacement for bypass diodes.

Platform

Maxim solar cell optimizer works by boosting the current of the weak cells to match those of the stronger, eliminating the corresponding performance penalty of the conventional system. The solar cell optimizer’s MPPT function works alongside the string inverter MPPT, to ensure that the system output is optimal under any environmental conditions. The module includes three Maxim solar cell optimizers, which replace the three diodes found in a conventional module junction box.

Availability

September, 2016 onwards.

Read Next

November 25, 2025
Renewables developer Plenitude will deploy perovskite-silicon tandem solar PV modules at a pilot solar project in the US.
November 24, 2025
US solar module manufacturer First Solar has inaugurated its 3.5GW vertically integrated manufacturing facility in the state of Louisiana, the company’s fifth factory in the US.
Premium
November 24, 2025
PV Talk: RES Group's Ksenia Dray discusses how European solar developers are reshaping strategies to maintain project viability in challenging market conditions.
November 18, 2025
TOPCon solar modules show signs of accelerated degradation, which undermines the long warranties promised by many manufacturers, according to new findings from German researchers.
Premium
November 18, 2025
PV Talk: George Touloupas of Intertek CEA explains how the regulatory environment is ratcheting up for the solar supply chain.
November 17, 2025
Jakson Group has started Phase 1 construction of its 6GW integrated solar ingot, wafer, cell and module manufacturing facility at Maksi, Madhya Pradesh.

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA