Technical Papers

Premium
Photovoltaics International Papers, Power Generation
In recent years solar photovoltaic electricity has shown a steady decrease in cost, thanks to technological improvements and economies of scale. Over the last 20 years the price of PV modules has dropped by more than 20% each time the cumulative volume of PV modules sold has doubled. System prices have fallen accordingly: during the last 5 years a price decrease of 50% has been seen in Europe. This trend will continue in the foreseeable future. System prices are expected to fall in the next 10 years by 36–51%, depending on the segment. Importantly, there is a huge potential for further reductions in generation costs: around 50% by 2020. The cost of PV electricity generation in Europe could decrease from 0.16–0.35€/kWh in 2010 to 0.08–0.18€/kWh in 2020, depending on system size and irradiance level. That decline in cost will continue in the coming years as the PV industry progresses towards becoming competitive with conventional energy sources. Under the right policy and market conditions, PV competitiveness can be achieved in some markets as early as 2013, and then spread across the Continent in the different market segments by 2020. This paper summarizes the first part of a newly published EPIA report about PV competing in the energy sector. The report illustrates why PV can become a mainstream player in the energy field before 2020. The study, carried out with the support of the strategic consulting firm A.T. Kearney, shines new light on the evolution of Europe’s future energy mix and PV’s role in it.
Premium
Photovoltaics International Papers, Power Generation
The solar industry suddenly finds itself in an altered business climate in which construction markets seem permanently damaged and government subsidies are under challenge. This paper outlines how BIPV provides a strategy for expanding the market for PV and creating value-added products in a radically changed political, economic and financial environment.
Premium
Photovoltaics International Papers, Power Generation
It is essential to understand the investment and operating costs of photovoltaic power plants in terms of economic parameter calculations such as levelized cost of electricity (LCoE). The dynamic behaviour of national and international markets requires a precise and detailed estimation of costs, and this knowledge is especially important to investors and policymakers. Only if the investment and operating costs of PV power plants are known can the price of electricity and the more detailed levelized cost of electricity be precisely calculated. High investment costs also require reliable investment policies and close cooperation between financial institutions (such as banks and investment funds) and power plant owners. Investment in large-scale PV power plants requires a detailed evaluation of solar radiation potential and grid availability, as well as a load analysis and a precise economic evaluation. When the investment cost based on the above-mentioned parameters is known, an estimation of the operating costs should be the next step. When all the costs of a PV power plant have been estimated, the price of electricity, or even a more detailed LCoE, can be calculated. This paper presents the trend of investment costs and some typical maintenance costs, and calculations of electricity price based on recent real data for large-scale PV power plants.
Premium
Market Watch, Photovoltaics International Papers
The benefits of solar photovoltaic (PV) power are well known, and, as this awareness rises and the cost of generating PV electricity declines, the technology is becoming more competitive with conventional electricity sources in market segments all across Europe. But bureaucratic hurdles remain a persistent threat to the widespread installation and integration of PV, often making it difficult to take advantage of the technology. In many countries, administrative processes and permitting procedures still require significant improvement. As a result, planning and connecting a solar photovoltaic system to the grid can still take several years in Europe.
Premium
Market Watch, Photovoltaics International Papers
The PV industry stands on the verge of an enormous achievement – an installed base of PV plants with 100GW of energy generation capability. This milestone has come about because of the contributions of a fully global industry that has blossomed in the past decade. Yet even though the PV industry traces its heritage to before the space programme, as with any dynamically growing industry most industry members have joined in the past five years. And each generation often makes the same mistakes that a previous generation made. Sometimes the same people move from one industry to another and repeat the same mistakes there. The PV industry is rediscovering ultra-competitive market dynamics that have previously been seen in other high-technology commodity markets. This paper begins with a discussion of one such market – the dynamic random access memory (DRAM) industry – and then looks at the current PV market and the industry outlook.
Premium
Fab & Facilities, Photovoltaics International Papers
How much carbon is emitted in producing a solar PV module and launching it on the market? This could be an important question which project developers, installers, investors, government agencies and end customers might ask solar PV manufacturers in the future. To answer it, producers need to know the direct emissions from the manufacturing process, as well as those generated from the activities of manufacturers in the upstream supply chain (including raw material acquisition, upstream energy use, packaging, transportation and procurement), and also those arising from module usage and eventual recycling. This paper, written in a cooperation between EuPD Research and Deutsches CleanTech Institut (DCTI), presents an overview of PV’s carbon footprint.
Premium
Cell Processing, Photovoltaics International Papers
In the photovoltaic industry, laser edge isolation (LEI) is a well-established process at the end of the process chain. However, because the cell properties vary from one cell producer to the next, no systematic approach is defined in industry for establishing an efficient isolation groove. Nevertheless, a general approach has to be defined for analyzing the LEI process for silicon solar cells. Besides the material aspects and laser parameters, atmospheric boundary conditions must be considered. This paper presents investigations into the ablation of a specific type of mc-silicon solar cell, and the most suitable laser, as well as the ambient parameters, is determined based on the results of the experiments.
Premium
Fab & Facilities, Photovoltaics International Papers
For a vertically integrated solar cell production starting with purification of silicon feedstock and ending with the production of solar cells, it is necessary to have control over all possible parameters that may affect yield, efficiency and product quality. This paper presents an approach for tracking products with minimal effort using a contactless technique. The method allows wafers to be virtually reconstructed into bricks and ingots, as well as recognizing the precursor wafer for each solar cell.
Premium
Photovoltaics International Papers, PV Modules
With new industrial challenges faced by the PV industry – such as the striking development of Chinese manufacturers, and ever more demanding investors and financial institutions – the quality of PV modules has never been as important as it is today. Because normative requirements are not matching the buyers’ expectations, the questions of what the real quality of a PV module is and how to assess it still remain. This paper analyzes the current situation in terms of quality and the causes of problems, and proposes some ways of addressing the issues in order for the industry to progress on the long path to excellence.
Premium
Cell Processing, Photovoltaics International Papers
Al2O3 deposition has received a lot of attention in the last few years for its attractive passivation properties of c-Si surfaces. Within the local Al back-surface field (BSF) cell concept, we considered several avenues of study: surface preparation, thermal stability, charge investigation and the ‘blistering’ phenomenon. The investigations converged on a passivation stack that includes a thin interfacial SiO2 like layer and a thin Al2O3 layer (~10nm), which undergoes a high-temperature anneal (> 600°C). In order for a surface passivation with Al2O3 to be a cost-effective step for the PV industry, a high Al2O3 deposition rate is required. Compared to the different high-throughput tools that have recently emerged on the PV market, such as atomic layer deposition (ALD) and plasma-enhanced chemical vapour deposition (PECVD), our tool screening revealed quite similar results. The differences therefore seem to have an origin primarily in the tool specifications rather than in the achievable Al2O3 material properties.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA
Solar Media Events
May 22, 2024
London, UK
Upcoming Webinars
May 29, 2024
11am (EDT) / 5pm (CEST)