Temperature coefficient playing key role in PV system performance – IEA report

January 19, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

The latest in a line of reports from the IEA (International Energy Agency) into longer-term analysis of PV systems highlights the role of ambient temperature in the long-term performance of PV systems. 

Although temperature coefficient related performance degradation has been well documented in typically hot and humid climates such as India with First Solar in white papers published in Photovoltaics International, PV Tech’s sister technical journal, the latest IEA study “Report IEA-PVPS T13-05:2014 Analysis of Long-Term Performance of PV Systems,” highlights the performance ratio (PR) impact of higher ambient temperature in countries such as Italy, showing meaningful statistical differences up and down the country. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The study showed that despite high irradiance levels in the south and middle regions of Italy, southern located PV systems (small and large) typically generated a lower performance ratio than plants in the middle region of the country due to higher ambient temperatures. However, both regions still outperformed northern located PV systems due to higher irradiance, despite cooler northern ambient temperatures. 

The study also noted in more northerly regions such as in the Netherlands for example, the performance ratio of a PV system in the winter months could reach an average PR of 82.1%, compared to 73.2% in the summer months. 

Based on the reports analysis of more than 600 PV plants in key countries around the world, PV system performance and annual yield variability can primarily be explained by irradiation and climate zone differences.

The study showed that a PV system could reach its optimum performance level when the ambient temperature was actually below –5 ºC and would gradually decline to 65%(PR) when the temperature exceeded +25 ºC.

The report also attempted to delve into PV system poor performance and failure analysis, noting that PV inverter issues as well as junction box issues did play a part in system failures but was statistically very small. 

However, PV system performance crucially required adequate monitoring that would also support better forward grid forecasting. 

Read Next

January 30, 2026
India Power Corporation Limited has partnered with Bhutan’s Green Energy Power Private Limited to develop a 70MWp solar power plant in Paro, Bhutan
January 30, 2026
 Scatec has reported strong fourth-quarter results with proportionate revenues increasing 25% year-on-year to NOK3,362 million (US$2.68 billion).
January 30, 2026
US-based PV recycling firm Solarcycle has begun operations at its Cedartown recycling facility in Georgia, US.
January 30, 2026
A 132MW solar PV project from French renewables company Voltalia has been selected by the Tunisian government for construction.
Premium
January 30, 2026
In an interview with PV Tech Premium, two UNSW researchers emphasise the need for enhanced UV testing for TOPCon solar cells.
January 29, 2026
Canadian renewables firm Westbridge Renewable Energy has received approval from the Alberta Utilities Commission (AUC) to build an up to 225MW solar-plus-storage plant in Alberta, Canada.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA