HeliosLite’s disruptive 1.5 axis PV tracker provides 31% more energy and bifacial ready

Facebook
Twitter
LinkedIn
Reddit
Email
This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to brings cost effective tracking to decentralized PV plants. Image: HeliosLite

HeliosLite has developed a disruptive PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness. This disruptive PV tracking solution boasts higher energy output than 1 axis horizontal trackers and is said to bring cost-effective tracking to decentralized PV plants. Field results attest to the energy boost versus fixed tilt and to the system’s robustness.  The open back design and maximum power tracking algorithm make HeliosLite’s 1.5 axis tracker a perfect match with bifacial modules. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Maximizing power output (MWh/MWp) drives lower the cost of energy and can bring even more value to projects with coupled to diesel generators, with variable feed-in tariffs or storage.  Dual axis trackers and inclined 1 axis trackers increase output with much lower power density (MWp/Hectare) but do not always decrease LCOE due to the marginal cost increase.  Furthermore, decentralized PV plants and difficult project sites do not have access to modular and cost-effective tracking solutions. 

Solution

HeliosLite has developed a PV tracker based on a patent pending 1.5 axis kinetic capturing more energy than 1 axis horizontal trackers without sacrificing cost-effectiveness.  The self-powered controller includes a power sensor, battery back-up and wireless communication to enhance the solution’s simplicity and ruggedness.  The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai, HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two-fold. By producing more energy throughout the day, HeliosLite’s tracker allows developers to optimize the total PV system investment to achieve a lower cost of energy.

HeliosLite’s 1.5 axis trackers have produced 31% more energy during the 1st year of operations versus the on-site East-West structures with seasonal variation decreased two fold. Image: HeliosLite

Applications

HeliosLite’s 1.5 axis PV tracker solution addresses market segments starting from 4 kWp to multi-MWp projects where maximum energy output counts most (off-grid, hybrid, solar pumps, rural electrification, self-consumption projects with or without storage) and where current 1 axis horizontal tracking solutions are less cost-effective or not suitable (slopes, landfills, sandy soils, uneven terrains, snow regions, temporary installations…). 

Platform

Wind tunnel tested and pre-certified under Eurocodes, each HeliosLite 1.5 axis tracker carries 12, 72 cell, PV panels driven independently or mechanically linked together in rows for a highly scalable tracking solution. The tilt angle can be optimized based on the project’s latitude by adjusting a single component. The system is said to be easy and quick to install without heavy lifting equipment. This movable tracker is compatible with multiple foundation solutions. Bifacial modules will be tested summer 2018.

Availability

Ready for delivery and can begin with benchmark trial projects from 24 kWp onwards.

The tracking algorithm uses input from power sensor to achieve maximum energy output. As measured in a pilot project near Dubai: Image HeliosLite

In September, HeliosLite and ‎Enerwhere will be conducting a webinar on increased energy output and reduced LCOE achieved by using 1.5 axis trackers vs fixed tilt based on 12 months of comparative data in Dubai, UAE. Register now.

26 November 2024
Málaga, Spain
Understanding PV module supply to the European market in 2025. PV ModuleTech Europe 2024 is a two-day conference that tackles these challenges directly, with an agenda that addresses all aspects of module supplier selection; product availability, technology offerings, traceability of supply-chain, factory auditing, module testing and reliability, and company bankability.
17 June 2025
Napa, USA
PV Tech has been running PV ModuleTech Conferences since 2017. PV ModuleTech USA, on 17-18 June 2025, will be our fourth PV ModulelTech conference dedicated to the U.S. utility scale solar sector. The event will gather the key stakeholders from solar developers, solar asset owners and investors, PV manufacturing, policy-making and and all interested downstream channels and third-party entities. The goal is simple: to map out the PV module supply channels to the U.S. out to 2026 and beyond.

Read Next

July 18, 2024
EDP Renewables North America (EDPR NA) has inaugurated the 200MW/40MW  Scarlet I solar-plus-storage project in Fresno County, California.
July 18, 2024
The facility can process up to 100,000 tonnes of decommissioned solar modules per year that can reduce electronic waste sent to landfills.
July 18, 2024
The financing will be offered to two banks, as they will provide loans to developers and end-users to install rooftop solar systems.
July 18, 2024
Winning bids as low as INR3.41/kWh have been registered in a tender for solar PV paired with battery storage hosted by the SECI.
July 17, 2024
From January to May this year, 251 new solar projects became operational in the US, with a combined capacity of 10,669MW.
July 17, 2024
US utility PacifiCorp and rPlus Energies signed a power purchase agreement (PPA) for the Green River Energy Center project in 2022.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
July 31, 2024
1:00 PM (BST) / 2:00PM (CEST)
Solar Media Events
September 24, 2024
Warsaw, Poland
Solar Media Events
September 24, 2024
Singapore, Asia
Solar Media Events
October 8, 2024
San Francisco Bay Area, USA