Endeas highlights I-V curve measurement issues with high-efficiency PV modules

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email
Endeas said it had developed a new method to counter the issues. Its Capacitance Compensation (CAC) technique is said to measure the steady-state I-V curve and maximum power of any PV cell or module based on a single flash pulse of only 40 ms. The method is included in its QuickSun 600 system, an all-in-one module testing station. Image: Endeas Oy

PV module equipment measurement specialist Endeas Oy has developed a new method to measure the steady-state I-V curves in PV modules using high-efficiency solar cells such as PERC, and especially HJT or IBC as solar simulators currently in production applications have limited accuracy, according to the company.

Endeas noted that when measuring I-V curves and maximum power of high-efficiency PV modules, inaccuracies can be discovered, due to the charging of the cells, which leads to a significant underestimation of the maximum power by typical flash testers. 

The company noted that increasing the flash pulse length to overcome the issue becomes expensive and comes with additional problems, such as heating of the module during measurement.

Endeas said it had developed a new method to counter the issues. Its Capacitance Compensation (CAC) technique is said to measure the steady-state I-V curve and maximum power of any PV cell or module based on a single flash pulse of only 40 ms. The method is included in its QuickSun 600 system, an all-in-one module testing station.

The Capacitance Compensation method will be presented at the EU PVSEC conference in Brussels on 24 September 2018 by Dr. Henri Vahlman, a scientist at Endeas.

“PV manufacturers are understandably requesting longer and longer flash pulses. They are aware that the maximum power of their high-efficiency products may be underestimated by their current solar simulators, leading them to sell their products at a lower price than necessary”, said Jaakko Hyvärinen, managing director of Endeas. “The new CAC method is perfectly suited for power measurements in PV manufacturing, as measurement results comparable to steady-state solar simulators can be provided for any PV technology with compact and proven flash testers that are straightforward to integrate into a manufacturing line.”

Endeas said that the CAC method was based on measuring the capacitance (ability to store electric charge) of the tested device during the flash pulse. The measured capacitance was taken into account in processing the measurement data, resulting in more accurate steady-state I-V curves and maximum power measurements, according to the company.

Read Next

April 8, 2021
US-based high-efficiency n-type monocrystalline Interdigitated Back Contact (IBC) PV manufacturing start-up Violet Power has insisted its plans to develop manufacturing capacity in the US remain on track despite the collapse of its strategic alliance with REC Silicon.
April 6, 2021
SunPower is to allow Maxeon Solar to the Performance Series (P Series) p-type mono-Passivated Emitter Rear Cell (PERC) shingled PV modules into the US market as part of a major change to initial manufacturing agreements.
April 1, 2021
‘Solar Module Super League’ (SMSL) member Trina Solar has reported total module shipments in 2020 of 15,915MW, an increase of over 81% compared to the 8,756MW shipments recorded in 2019.
March 24, 2021
China-based integrated monocrystalline PV manufacturer Solargiga Energy has warned that despite a 37% increase in total revenue for 2020, supply chain issues led to expected losses of around RMB215 million (US$33 million) for the year.
PV Tech Premium
March 23, 2021
PV Tech delves into the performance of the top five publicly-listed US residential solar installers – Tesla, Sunrun, SunPower, Vivint Solar and Sunnova – detailing how they grew their market share in 2020, how regionality affected installs last year, and what hurdles the sector can expect in 2021.
March 18, 2021
‘Solar Module Super League’ (SMSL) member Canadian Solar is guiding a significant increase in PV module and energy storage shipments, resulting in full year 2021 revenue of between US$5.6 billion to US$6.0 billion, over 70% higher than revenue reported for 2020.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Upcoming Webinars
April 28, 2021
4:00 - 4:30 PM CET