Hong Kong researchers enhance perovskite efficiency through adding heat-resistant layer

Facebook
Twitter
LinkedIn
Reddit
Email
The improved cells could retain over 90% efficiency. Credit: City University of Hong Kong

City University of Hong Kong has announced an improvement in perovskite solar cells as a research team engineered a type of self-assembled monolayer and anchored it on a nickel oxide surface as a charge extraction layer.

The research team claimed that the self-assembled monolayer is a heat-sensitive shield of the perovskite cells. By introducing the “thermally robust charge extraction layer”, the improved cells could retain over 90% efficiency — boasting an efficiency rate of 25.6% — even after operating under about 65℃ for over 1,000 hours.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

“We discovered that high-temperature exposure can cause the chemical bonds within self-assembled monolayer molecules to fracture, negatively impacting device performance. So our solution was akin to adding a layer of nickel oxide nanoparticles, topped by a self-assembled monolayer, achieved through an integration of various experimental approaches and theoretical calculations,” said Zhu Zonglong, professor of the department of chemistry at City University of Hong Kong.

Apart from researchers in universities worldwide, the solar industry has also been developing perovskite. For example, German research institution Fraunhofer ISE has developed a perovskite-silicon triple-junction solar cell which boasts a conversion efficiency of “over 30%” and a voltage of over 2.8v.

US’ National Renewable Energy Laboratory also said bifacial perovskite cells could potentially produce up to 20% more energy yield than their monofacial counterparts.

Read Next

July 9, 2025
Caelux has finished the first sale of its perovskite glass, which will be paired with a silicon module developed by a 'reputable manufacturer'.
July 4, 2025
Risen Energy’s mass-produced heterojunction (HJT) modules have reached a cell conversion efficiency of 26.61%, a record figure for the company.
June 26, 2025
Researchers at the Solar Energy Research Institute of Singapore (SERIS) have claimed a record 26.4% conversion efficiency in a perovskite-organic tandem cell.
Premium
June 13, 2025
SNEC 2025 takeaways: TOPCon modules set benchmark power at 650W, a wave of BC modules and perovskite tandem cells gains momentum.
June 2, 2025
A new manufacturing method has produced tandem perovskite-silicon tandem solar cells with a conversion efficiency of 27.8%.
May 15, 2025
Qcells claims its perovskite/silicon tandem technology has moved a step closer to commercialisation after passing several reliability tests.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK