Lifecycle study of perovskites finds lower environmental impact than silicon modules

Facebook
Twitter
LinkedIn
Reddit
Email
Oxford PV provided the perovskite-on-silicon module data for the study. Image: Oxford PV.

Perovskite-on-silicon PV modules are more environmentally advantageous than conventional silicon heterojunction (HJT) modules over a 25-year lifetime, according to a study from researchers in Germany.

Assessing perovskite-on-silicon modules across categories such as global warming potential, water consumption, toxicity and metals usage, the team studied the materials and energy input for a module’s ‘cradle to gate’ lifecycle, covering input for wafer production, manufacture of the perovskite cell and module production.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

They weighed up the environmental impact of the perovskite tandem module against the electricity generated over its lifetime. While they found the overall environmental impact of the perovskite-on-silicon tandem module to be higher than the HJT module due to additional process steps, this is offset by higher efficiencies.

“We found that the perovskite-on-silicon module has 6% to 18% less environmental impact than a silicon module when we consider the additional energy generated over the tandem module’s 25-year lifetime,” said Martin Roffeis, co-author from The Technical University of Berlin.

While lifecycle assessments of perovskite-on-silicon PV modules have so far relied heavily on data from laboratory and test facilities rather than manufacturers, the researchers assessed the environmental performance of industrially produced modules using data from an Oxford PV manufacturing line in Germany.

Titled ‘New insights into the environmental performance of perovskite-on-silicon tandem solar cells – a life cycle assessment of industrially manufactured modules’, the study is the first lifecycle assessment using industry primary data, according to the researchers.

Perovskite-on-silicon solar technology is based on a tandem system where a perovskite cell is deposited on top of a silicon cell, maximising power generation.

Researchers at EPFL’s Photovoltaics and Thin Film Electronics Laboratory and CSEM’s Sustainable Energy Centre last week claimed two world records for perovskite-on-silicon cells as they reached a power conversion efficiency of 31.25%.

The tandem module used in the latest study would generate the same amount of electricity in 22 years as the referenced silicon HJT module over 25 years.

“The higher power conversion efficiency of the perovskite-on-silicon tandem module compensates for its environmental impact due to the additional perovskite material and processes,” said Jan-Christoph Goldschmidt, co-author who carried out the study while at the Fraunhofer Institute for Solar Energy Systems and who is now at The Philipps University of Marburg.

Another study published earlier this month by a team at the US National Renewable Energy Laboratory (NREL) found thin-film technologies such as perovskites and cadmium telluride can markedly reduce the carbon intensity of PV compared with silicon alternatives.

Read Next

July 18, 2025
Companies have signed 4.22GW of solar PV power purchase agreements in the first half of 2025, according to Swiss consultancy Pexapark.
July 17, 2025
Germany’s latest rooftop solar PV and noise barrier auction ended up undersubscribed and awarded only 255MW.
July 15, 2025
Greater policy clarity will be needed if Germany is realise its FPV potential, according to a report from Fraunhofer ISE.
July 14, 2025
For the first time ever, solar PV was the biggest source of electricity in June 2025, according to data from energy think tank Ember.
July 9, 2025
Caelux has finished the first sale of its perovskite glass, which will be paired with a silicon module developed by a 'reputable manufacturer'.
July 8, 2025
Germany could install 500GW of new solar agrivoltaics (agriPV) capacity on its most 'suitable' land, according to Fraunhofer ISE.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK