LONGi and Sun Yat-sen researchers develop HJT back contact cells with power conversion efficiency of 27.09%

Facebook
Twitter
LinkedIn
Reddit
Email
The research involved testing a number of new manufacturing processes and using a nanocrystalline layer. Image: LONGi.

Researchers from Chinese module manufacturer LONGi and the School of Materials at Sun Yat-sen University have developed heterojunction (HJT) back contact solar cells with a power conversion efficiency of 27.09%.

The results of the tests, published in Nature, note that the majority of recombination losses stem from “the hole-selective contact region” and “polarity boundaries”, and propose new manufacturing processes to minimise these losses.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The researchers tested a ten-step cell production process, where steps included wet chemical cleaning, chemical vapour deposition on the rear side of the cells and the use of laser patterning, at LONGi’s commercial HJT back contact (HBC) production line used to produce the company’s M6-sized modules.

The study also involved the replacement of “amorphous silicon layers” in the cells with “nanocrystalline-doped films” to function as transporting layers, which the researchers found improved the power conversion efficiency of the cell. In the study’s abstract, its authors note that using nanocrystalline structures in the transporting layers could help push power conversion efficiency as high as 27.7%.

“Compared to nanocrystalline silicon, amorphous silicon has not effectively suppressed charge carrier transport loss due to inefficient transport at the interface between the doped layer and the transparent conductive oxide layer, not fulfilling band-to-band tunneling mechanism based on direct energy transitions,” wrote the report’s authors in the study. “To enhance efficiency, adopting nanocrystalline silicon technology for improving contact properties is recommended.”

The results were verified by the Institute for Solar Energy Research in Hamelin, Germany, and the testing of these processes at a commercial-scale facility could help accelerate the scaling up of these methods.

The news follows LONGi’s launch of a back contact module, with a power conversion efficiency of 22.3%, earlier this year. Both this module—and the company’s Hi-MO X10 module, which was launched last week—use LONGi’s hybrid passivated back contact (HBPC) cells, as the company looks to continue its research into back contact technology.

Read Next

May 19, 2025
Swedish solar developer OX2 has received development consent from the New South Wales government in Australia for a 90MW solar-plus-storage project.
May 14, 2025
Silfab Solar has raised US$110 million through the sale of Section 45X Advanced Manufacturing Production Tax Credits (PTCs).
May 13, 2025
SunDrive has signed a JDA with China’s Maxwell Technologies and Vistar Equipment Technology, suppliers of solar cell production equipment.
May 12, 2025
Researchers from the University of New South Wales (UNSW) and the University of Newcastle have found that “hidden contaminants” in TOPCon and HJT modules can lead to a power loss of up to 16%.
May 12, 2025
CEA's Martin Meyers considers the pros and cons of the different PV cell technology options for manufacturers starting production in the US.
May 12, 2025
SEG Solar has commissioned the first phase of its newest cell manufacturing facility, in Indonesia, with a production capacity of 2GW.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia