LONGi and Sun Yat-sen researchers develop HJT back contact cells with power conversion efficiency of 27.09%

Facebook
Twitter
LinkedIn
Reddit
Email
The research involved testing a number of new manufacturing processes and using a nanocrystalline layer. Image: LONGi.

Researchers from Chinese module manufacturer LONGi and the School of Materials at Sun Yat-sen University have developed heterojunction (HJT) back contact solar cells with a power conversion efficiency of 27.09%.

The results of the tests, published in Nature, note that the majority of recombination losses stem from “the hole-selective contact region” and “polarity boundaries”, and propose new manufacturing processes to minimise these losses.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The researchers tested a ten-step cell production process, where steps included wet chemical cleaning, chemical vapour deposition on the rear side of the cells and the use of laser patterning, at LONGi’s commercial HJT back contact (HBC) production line used to produce the company’s M6-sized modules.

The study also involved the replacement of “amorphous silicon layers” in the cells with “nanocrystalline-doped films” to function as transporting layers, which the researchers found improved the power conversion efficiency of the cell. In the study’s abstract, its authors note that using nanocrystalline structures in the transporting layers could help push power conversion efficiency as high as 27.7%.

“Compared to nanocrystalline silicon, amorphous silicon has not effectively suppressed charge carrier transport loss due to inefficient transport at the interface between the doped layer and the transparent conductive oxide layer, not fulfilling band-to-band tunneling mechanism based on direct energy transitions,” wrote the report’s authors in the study. “To enhance efficiency, adopting nanocrystalline silicon technology for improving contact properties is recommended.”

The results were verified by the Institute for Solar Energy Research in Hamelin, Germany, and the testing of these processes at a commercial-scale facility could help accelerate the scaling up of these methods.

The news follows LONGi’s launch of a back contact module, with a power conversion efficiency of 22.3%, earlier this year. Both this module—and the company’s Hi-MO X10 module, which was launched last week—use LONGi’s hybrid passivated back contact (HBPC) cells, as the company looks to continue its research into back contact technology.

Read Next

June 2, 2025
A new manufacturing method has produced tandem perovskite-silicon tandem solar cells with a conversion efficiency of 27.8%.
June 2, 2025
The LECO process used in the production of TOPCon solar cells could increase their resistances by 'orders of magnitude', per new research.
May 30, 2025
Swiss solar manufacturer Meyer Burger has abandoned module production activities at its manufacturing facility in Goodyear, Arizona, US.
May 29, 2025
Researchers have developed a new methodology they hope will improve the modelling of the impact of different types of dust on PV performance.
Premium
May 27, 2025
Inverters are critical to PV systems but are often over-specified due to inadequate data on which materials and designs optimise performance.
May 27, 2025
The director of Chinese solar manufacturing giant LONGi has stepped down to focus on the company research and development (R&D) operations.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
September 16, 2025
Athens, Greece