LONGi and Sun Yat-sen researchers develop HJT back contact cells with power conversion efficiency of 27.09%

October 22, 2024
Facebook
Twitter
LinkedIn
Reddit
Email
The research involved testing a number of new manufacturing processes and using a nanocrystalline layer. Image: LONGi.

Researchers from Chinese module manufacturer LONGi and the School of Materials at Sun Yat-sen University have developed heterojunction (HJT) back contact solar cells with a power conversion efficiency of 27.09%.

The results of the tests, published in Nature, note that the majority of recombination losses stem from “the hole-selective contact region” and “polarity boundaries”, and propose new manufacturing processes to minimise these losses.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The researchers tested a ten-step cell production process, where steps included wet chemical cleaning, chemical vapour deposition on the rear side of the cells and the use of laser patterning, at LONGi’s commercial HJT back contact (HBC) production line used to produce the company’s M6-sized modules.

The study also involved the replacement of “amorphous silicon layers” in the cells with “nanocrystalline-doped films” to function as transporting layers, which the researchers found improved the power conversion efficiency of the cell. In the study’s abstract, its authors note that using nanocrystalline structures in the transporting layers could help push power conversion efficiency as high as 27.7%.

“Compared to nanocrystalline silicon, amorphous silicon has not effectively suppressed charge carrier transport loss due to inefficient transport at the interface between the doped layer and the transparent conductive oxide layer, not fulfilling band-to-band tunneling mechanism based on direct energy transitions,” wrote the report’s authors in the study. “To enhance efficiency, adopting nanocrystalline silicon technology for improving contact properties is recommended.”

The results were verified by the Institute for Solar Energy Research in Hamelin, Germany, and the testing of these processes at a commercial-scale facility could help accelerate the scaling up of these methods.

The news follows LONGi’s launch of a back contact module, with a power conversion efficiency of 22.3%, earlier this year. Both this module—and the company’s Hi-MO X10 module, which was launched last week—use LONGi’s hybrid passivated back contact (HBPC) cells, as the company looks to continue its research into back contact technology.

Read Next

November 11, 2025
The Australian Renewable Energy Agency (ARENA) has committed AU$25.3 million (US$16.53 million) in funding to support PV cell technology startup SunDrive Solar's continued development of copper-based solar cell technology.
Premium
November 6, 2025
Third-quarter results show a clear split in the fortunes of China’s leading polysilicon and module producers, writes Carrie Xiao.
November 5, 2025
Voltec Solar has signed a supply deal to use solar cells produced by Toyo Solar in its solar modules produced in France.
November 4, 2025
Radovan Kopecek and Christian Peter look ahead to an event in Yiwu, China, later this month, where the wider commercialisation of high-efficiency back contact PV technology will be under the spotlight.
Sponsored
October 22, 2025
LONGi vice president Dennis She discusses the value logic behind the company's strategic focus on back contact technology.
October 8, 2025
US solar module prices jumped in Q3 2025 as developers scrambled to meet the 2 September 2025 safe harbour deadline for Investment Tax Credit (ITC) qualification, according to supply chain platform Anza.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal