LONGi tripling monocrystalline wafer capacity to 45GW

Facebook
Twitter
LinkedIn
Reddit
Email
LONGi said in a financial filing that it achieved 15GW of monocrystalline wafer nameplate capacity by the end of 2017. Image: LONGi

Leading fully-integrated high-efficiency monocrystalline module manufacturer and ‘Silicon Module Super League’ (SMSL) member LONGi Green Energy Technology has set a strategic plan to triple monocrystalline ingot and wafer capacity to 45GW in 2020. 

LONGi said in a financial filing that it achieved 15GW of monocrystalline wafer nameplate capacity by the end of 2017, up 2GW from previous plans as the company accelerated production ramps to meet demand. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The new strategic plan, which is not a commitment to investors that it would action the plans and commit to the significant capital expenditures required, includes taking wafer capacity to 28GW by the end of 2018 and 36GW by the end of 2019. LONGi also said that the plan was to achieve 45GW by the end of 2020. 

The new strategic plan, which is not a commitment to investors that it would action the plans and commit to the significant capital expenditures required, includes taking wafer capacity to 28GW by the end of 2018 and 36GW by the end of 2019. LONGi also said that the plan was to achieve 45GW by the end of 2020.

PV Tech had previously reported that LONGi was fast-tracking various ingot and wafer expansion plans currently under construction and pulling in projects nearing completion where possible. 

In 2017, LONGi was undertaking the construction of a 5GW ingot production plant in Lijiang, China. The company also announced in early 2017 that Trina Solar and Tongwei, via its polysilicon subsidiary, Sichuan Yongxiang were to form a Joint Venture (JV) to own and operate the facility. LONGi also planned a 5GW ingot/wafer plant in Baoshan, China. 

The company had also expected to complete and have begun operating a 1GW wafer plant in Kuching, Malaysia at the end of the year. 

A 1GW ingot production plant in Ningxia was also expected to have started production in the fourth quarter of 2017.

As a result, LONGi’s target of 28GW of ingot/wafer nameplate capacity by the end of 2018 looks highly plausible. The tripling of capacity to 45GW would require a significant round of investments in the multi-billion dollar range.  

LONGi’s target of 28GW of ingot/wafer nameplate capacity by the end of 2018 looks highly plausible. Image: LONGi

Reasons behind the wafer capacity expansion

As PV Tech has previously reported, Finlay Colville, Head of Solar Intelligence at Solar Media has projected that monocrystalline solar cell production is expected to account for 49% of all crystalline cell production in 2018 and become the dominant technology used in the PV industry by 2019, driven by LONGi.

Including all n-type and p-type mono cell production, c-Si mono cell production and final module supply levels to end-markets, will approach multi c-Si volumes during 2018, before becoming the dominant technology used by the solar industry in 2019.

The company is both supporting its own in-house cell and module capacity expansions but the key is its support for other monocrystalline solar cell production capacity expansions from merchant cell producers such as Aiko Solar and Tongwei Group as well as module manufacturers such as SMSL member, Trina Solar. 

LONGi has also been making significant investments in R&D, which is driving monocrystalline ingot and wafer technology efficiency and cost reduction strategies to further the adoption of monocrystalline products. 

R&D spending at LONGi puts it in the top league of industry spenders, which include CdTe thin-film leader, First Solar and high-efficiency cell and module leader, SunPower, according to PV Tech’s annual R&D spending report. 

The ingot and wafer capacity expansions go hand in hand with technology advancements at the R&D level, with the expected result that mono technology continues to expand market share and become the lowest cost high-efficiency end-products on the market. In 2017 for expample, LONGi 's production of P-type mono-facial PERC cell efficiency, as well as bifacial PERC cell front side efficiency, had reached 21.3% on average.

Although LONGi’s strategy is to retain its market leading position and be a global supplier, end market demand in China is also increasing and growth is expected to continue, notably for high-efficiency modules due to the ‘Top Runner’ program and the significant growth in the Distributed Generation (DG) market. 

Recent official figures put China’s solar installations at around 52.83GW in 2017, up from 34.54GW in 2016. China therefore accounted for around 50% of the global solar market in 2017. 

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.
10 March 2026
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.

Read Next

May 20, 2025
Changes to tax credits under the Inflation Reduction Act (IRA) could “jeopardise” nearly 300 US solar and energy storage manufacturing facilities, according to trade body the Solar Energy Industries Association (SEIA).
May 15, 2025
Indian solar module manufacturer Vikram Solar has signed a 326.6MW module supply agreement with Gujarat State Electricity Corporation Limited (GSECL) for the Khavda Solar park in Gujarat.
May 15, 2025
Solar manufacturer Canadian Solar recorded a slight increase in module shipments and endured losses in Q1 amid 'geopolitical complexities.'
May 14, 2025
US energy officials have found unexplained communication equipment inside some Chinese-made inverter devices.
Premium
May 14, 2025
As the University of Queensland take the first steps towards commercialising a tin halide perovskite solar cell concept, George Heynes explores the development of the technology.
May 14, 2025
The University of Queensland has partnered with Halocell Energy to support the advancement of the university’s THP solar cell technology.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia