In terms of material properties, plasma-enhanced chemical vapour deposition (PECVD) of ZnO has advantages over sputtering techniques, due to the variety of available precursors, and the different dopants for achieving certain levels of n-type and, controversially discussed, p-type transparent conductive oxides (TCOs) on various substrate materials. This paper considers the deposition of boron-doped zinc oxide for n-type TCO-application on substrates of dimensions up to 50×50cm2 and at a temperature range of 50 to 450°C using a PECVD reactor with a plasma frequency of 13.56MHz. The materials’ characteristics such as transparency, carrier concentration and structural properties are discussed as a function of the deposition parameters. The deposition temperature strongly affects the crystallographic and morphological appearance of the deposited thin films, which was investigated using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) methods. The electronic band structure-dependent characteristics were studied using ultraviolet-visible (UV-vis) spectroscopy and Hall measurements. Secondary ion mass spectrometry (SIMS) measurements complete the characterization methods for qualitatively verifying the incorporation of dopants and impurities. Results are reported for columnar-grown boron-doped ZnO with optical transparency greater than 80% in the visible range and a maximum carrier concentration of 1020cm-3.
Because of its attractive electronic and optical properties, zinc oxide (ZnO) has found widespread use as a front and back electrode in commercial solar cells. ZnO can be deposited on glass using a variety of different methods, of which vacuum-based techniques are the most commonly used in industrial applications. Aluminium-doped sputtered ZnO:Al (AZO) has been studied intensively for use as a front contact in a-Si/μc-Si tandem cells. The implementation of AZO in series production has been hindered by reproducibility issues stemming from the combination of deposition and subsequent etching steps that are necessary to tune the ‘haze’ of the layers for optimal light scattering. Boron-doped ZnO:B (BZO), deposited by low-pressure chemical vapour deposition (LPCVD), has become a cost-effective option for module manufacturers, since the desired layer morphology can be produced as grown without the need of post-growth chemical etching. This paper addresses the different aspects of using AZO and BZO layers as front contacts for a-Si/μc-Si tandem modules fabricated in series production. The properties of the underlying ZnO layers put restrictions on the layer properties and process parameters that are used in the deposition of a-Si and μc-Si.
Crystalline silicon wafer technology currently dominates industrial solar cell production. Common devices feature opposing electrodes situated at the front and the rear surface of the wafer, and subsequent front-to-rear interconnection is used for module assembly. This paper describes the status and perspectives of the emitter wrapthrough (EWT) cell concept, which is a fully back-contacted solar cell. The functions which have to be fulfilled for this concept, as well as the corresponding challenges and advances, are discussed.
Silver paste is a key component of the design of nearly all silicon wafer solar cells manufactured in 2011. The high cost of the precious metal in the paste formulation means that silver paste is also the second-highest component of the total cost of materials. This article reviews the silver paste supply chain and the challenges in silver paste formulation and manufacture, and discusses some of the approaches for reducing or removing entirely the use of silver in crystalline silicon cell manufacture.
The reliable analysis of trace elements in silicon is of fundamental importance for the understanding of material properties and quality control of solar cells. This paper presents a demonstration of the power of two analytical techniques for the determination of trace elements in solar silicon: inductively coupled plasma mass spectrometry (ICP-MS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). These techniques are among the few that achieve sufficiently low detection limits and they may complement each other because of their specific performance. Examples are given of the quantitative chemical analysis of boron, phosphorus and iron in different types of solar silicon, as well as of the enrichment of metals and alkali metals in Si3N4 precipitates.
In the photovoltaic industry, laser edge isolation (LEI) is a well-established process at the end of the process chain. However, because the cell properties vary from one cell producer to the next, no systematic approach is defined in industry for establishing an efficient isolation groove. Nevertheless, a general approach has to be defined for analyzing the LEI process for silicon solar cells. Besides the material aspects and laser parameters, atmospheric boundary conditions must be considered. This paper presents investigations into the ablation of a specific type of mc-silicon solar cell, and the most suitable laser, as well as the ambient parameters, is determined based on the results of the experiments.
For a vertically integrated solar cell production starting with purification of silicon feedstock and ending with the production of solar cells, it is necessary to have control over all possible parameters that may affect yield, efficiency and product quality. This paper presents an approach for tracking products with minimal effort using a contactless technique. The method allows wafers to be virtually reconstructed into bricks and ingots, as well as recognizing the precursor wafer for each solar cell.
Published in November 2011, the 14th edition of Photovoltaics International provides a variety of technical papers from some of the industry’s stalwarts. Features include: TÜV Rheinland on junction box testing; Laser Zentrum Hannover on laser edge isolation of mc-Si cells; Calisolar on the importance of traceability; Fraunhofer ISE on EWT cells; and EPIA on Europe’s LCOE.
Solar enterprises will each be faced with the occasional surplus or lack of solar modules in their lifetimes. In these instances, it is useful to adjust stock levels for modules at short notice, thus creating a spot market. Spot markets serve the short-term trade in different products, by enabling the seller to permanently or temporarily offload surplus, while buyers are able to access attractive offers on surplus stocks and supplement existing supply arrangements as a last resort.
A new production process for crystalline silicon (c-Si) solar cells, specifically p-type back-contact solar cells, is proposed. In contrast to the conventional c-Si solar cell manufacturing method, this new technology eliminates the etching process and reduces the industrial three-step electrode printing to only one step, greatly improving the technological process. Furthermore, the proposed process is also largely compatible with a traditional c-Si solar cell production line. Oxidation technology for producing the SiO2 film on a c-Si wafer, together with corrosive window technology, such as through HF corrosive paste screen printing, for creating the patterning on the wafer covered with SiO2 film, are used in the fabrication of the p-type back-contact solar cells.