RENA’s ‘InCellPlate Cu’ platform offers major cost savings at highest efficiency level

September 10, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

RENA’s ‘InCellPlate Cu’ inline equipment for direct plating of a Ni/Cu/Ag stack on silicon, when combined with laser ablation of the silicon nitride layer and subsequent inline anneal, is said to provide complete front-side metallization for solar cell manufacturing. Compared with screen-printing, the technology allows cutting the cell production cost by US$0.06 (cents) and at the same time offers potential for cell efficiency improvement.

Problem

Conventional screen printing of the front contacts remains among the most costly processes in solar cell manufacturing and at the same time limits the achievable finger width and emitter sheet resistance and so limits the overall cell performance.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

Direct plating on silicon with RENA’s InCellPlate Cu makes the use of screen-print paste on the front side obsolete. It further replaces most of the silver with cheaper copper as a conductive metal, which is claimed to reduce costs per cell by US$0.06 (cents). Furthermore, the technology allows the formation of thinner fingers (≤30 μm) and contact formation to emitters with higher sheet resistance (≥120 Ohmsq.), thus enabling higher currents and voltages while keeping the fill factor high. RENA has already successfully demonstrated the technology, reaching 20.8% efficiency on Cz-PERC cells (verified by ISE Cal-Lab). Modules made with this technology successfully passed more than three times the IEC61215 test procedures and the soldered strings showed outstanding adhesion properties(>1N/mm), according to the company.

Applications

Solar cell processing, front side contact formation.

Platform

The InCellPlate Cu is based on RENA’s proven NIAK inline platform for up to 3600w/h throughput. RENA’s patented technology allows single side plating of the cell’s sunny side while keeping the rear-side dry. This reduces the drag-out of electrolyte and associated production costs, avoids undesired plating of the contacts and excludes the risk of degradation of the aluminum paste by contact with the electrolyte.

Availability

Currently available. 

Read Next

Premium
January 22, 2026
PV Talk: 'BESS and solar are the perfect bedfellows,' says Natasha Luther-Jones, about the potential for solar PV and BESS in Europe.
January 22, 2026
The fundamentals of the global solar PV market will remain strong in 2026 despite the challenges the sector faced in 2025, according to new analysis from Wood Mackenzie.
January 22, 2026
Indian rooftop solar provider Fujiyama Power has announced plans to commission its 1GW solar cell manufacturing plant in Dadri, Uttar Pradesh.
January 22, 2026
PV developer Solar Philippines has issued a statement denying liability to pay PHP24 billion (US$400 million) in penalties from the Philippines’ Department of Energy (DoE).
January 22, 2026
Research by 3E and Statkraft has used a new performance measure for solar trackers to uncover “alarming” evidence of a gap between claimed and actual performance.
January 22, 2026
Greek developer Metlen Energy and Metals has partnered with local maritime firm Tsakos Group to build a 251.9MW solar-plus-storage project in Greece.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA