RENA’s ‘InCellPlate Cu’ platform offers major cost savings at highest efficiency level

September 10, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

RENA’s ‘InCellPlate Cu’ inline equipment for direct plating of a Ni/Cu/Ag stack on silicon, when combined with laser ablation of the silicon nitride layer and subsequent inline anneal, is said to provide complete front-side metallization for solar cell manufacturing. Compared with screen-printing, the technology allows cutting the cell production cost by US$0.06 (cents) and at the same time offers potential for cell efficiency improvement.

Problem

Conventional screen printing of the front contacts remains among the most costly processes in solar cell manufacturing and at the same time limits the achievable finger width and emitter sheet resistance and so limits the overall cell performance.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

Direct plating on silicon with RENA’s InCellPlate Cu makes the use of screen-print paste on the front side obsolete. It further replaces most of the silver with cheaper copper as a conductive metal, which is claimed to reduce costs per cell by US$0.06 (cents). Furthermore, the technology allows the formation of thinner fingers (≤30 μm) and contact formation to emitters with higher sheet resistance (≥120 Ohmsq.), thus enabling higher currents and voltages while keeping the fill factor high. RENA has already successfully demonstrated the technology, reaching 20.8% efficiency on Cz-PERC cells (verified by ISE Cal-Lab). Modules made with this technology successfully passed more than three times the IEC61215 test procedures and the soldered strings showed outstanding adhesion properties(>1N/mm), according to the company.

Applications

Solar cell processing, front side contact formation.

Platform

The InCellPlate Cu is based on RENA’s proven NIAK inline platform for up to 3600w/h throughput. RENA’s patented technology allows single side plating of the cell’s sunny side while keeping the rear-side dry. This reduces the drag-out of electrolyte and associated production costs, avoids undesired plating of the contacts and excludes the risk of degradation of the aluminum paste by contact with the electrolyte.

Availability

Currently available. 

Read Next

October 28, 2025
Fotowatio Renewable Ventures (FRV) Australia has announced the development of a 210MWdc solar project in New Zealand's Rangitikei District.
October 27, 2025
Chinese engineering firm Shanghai Electric has signed an engineering, procurement, and construction (EPC) contract with independent power producer (IPP) Econergy to build a 342MW solar PV plant in Romania.
October 27, 2025
Engie has signed additional PPAs with Meta, expanding their partnership to more than 1.3GW across four solar projects in Texas.
October 27, 2025
Waaree Energies has secured four solar module supply contracts totalling 692MW – three for projects in India and one in the US through its subsidiary.
October 27, 2025
Chinese polysilicon producer Daqo New Energy saw an increase in sales and profits in Q3 2025, as the sector looks to address ongoing oversupply and financial losses.
October 27, 2025
Global corporate financing in the solar industry reached US$6.5 billion in the third quarter of 2025, a 14% increase from the same period a year ago.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany
Solar Media Events
March 24, 2026
Lisbon, Portugal