Saudi researchers find synthetic molecule to boost efficiency and longevity of perovskite solar cells

May 2, 2025
Facebook
Twitter
LinkedIn
Reddit
Email
The molecule, known as CPMAC, helped improve the energy efficiency of perovskite solar cells by 0.6%. Image: KAUST.

A study from researchers at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia has shown that the use of a synthetic molecule in the design of a perovskite solar cell can boost its energy efficiency and longevity.

Known as CPMAC (phenylmethanaminium chloride), the molecule improved the energy efficiency of perovskite solar cells by 0.6%, compared to solar cells built with C₆₀, a black solid made of carbon atoms of which perovskite solar cells are typically made. CPMAC is an abbreviation for an ionic salt synthesised from buckminsterfullerene, another name for C₆₀.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Despite being used more commonly, C₆₀ limits the performance and stability of the solar cells, said the researchers. Another difference, according to the researchers, is when CPMAP and C₆₀ cells were exposed to hot temperatures at different humidities for more than 2,000 hours, the CPMAP solar cells showed a drop in power conversion efficiency that was one-third the size of the decline seen in C₆₀ cells.

According to the researchers, the difference between the two types was more apparent when assembling them into modules consisting of four solar cells, with CPMAC reducing defects in the electron transfer layer by creating ionic bonds with the perovskite rather than the weaker van der Waals bonds made with C60.

“For over a decade, C₆₀ has been an integral component in the development of perovskite solar cells. However, weak interactions at the perovskite/C₆₀ interface lead to mechanical degradation that compromises long-term solar cell stability,” said Professor Osman Bakr, executive faculty of the KAUST Center of Excellence for Renewable Energy and Sustainable Technologies (CREST), who led the KAUST contributions to the research.

“To address this limitation, we designed a C₆₀-derived ionic salt, CPMAC, to significantly enhance the stability of the perovskite solar cells,”

The study was published in the Science publication, and can be accessed here.

Read Next

October 27, 2025
US solar technology company Swift Solar has deployed perovskite solar technology as part of a Department of Defence cyber warfare exercise in the state of Virginia.
Premium
October 14, 2025
Perovskite, tariffs, Section 232 and FEOC were among the key topics discussed at PV CellTech USA this year in San Francisco.
October 8, 2025
University of Sydney scientists have created the largest and most efficient triple-junction perovskite-perovskite-silicon solar cell on record.
October 2, 2025
PV products using perovskite technology could assume a dominant position within the next ten years, according to module producer Qcells' CTO.
September 5, 2025
Scientists from Germany and Saudi Arabia have discovered that perovskite thin-film cells are compatible with current industry standard silicon solar cells, which they claim is a “crucial step toward the industrialisation of perovskite silicon tandem solar cells”.
Premium
July 31, 2025
PV Tech Premium spoke with Qiaogiang Gan at KAUST on how the cooling technology helps improve solar cell application in harsher environments.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany