Storing perovskite at low temperatures could prevent degredation, study finds

Facebook
Twitter
LinkedIn
Reddit
Email
Researchers from the Massachusetts Institute of Technology have also been looking into the life-span of perovskite solar cells. Image: MIT.

Researchers at the University of Sheffield have found a new way to extend the life of perovskite materials by more than three months, paving the way for new solar cell technologies to be manufactured in a less wasteful fashion.

Perovskite materials’ lifespan can be extended from much less than a month to more than four if they are stored at low temperatures, according to scientists at the University of Sheffield’s Energy Institute and Department of Physics and Astronomy.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The researchers worked with the university’s tech spinout, Ossila Ltd, to conduct a series of experiments that focused on the stability of perovskite precursor solutions; the light-absorbing layer which is positioned between those used to extract current from the cell. Some solutions were kept at room temperature, while others were refrigerated at four degrees Celsius for varying time periods, before they were used to make prototype solar cells.

Due to the shorter lifespan of current perovskite solar cells, many companies face difficulty maintaining production capacity if they cannot rely on a consistent supply of precursor solutions. Sheffield’s Department of Physics and Astronomy researcher David Lidzey said the findings, which were published in the journal ChemSusChem, show that storing solutions at low temperatures enables companies to side-step the issue altogether.

As well as temperature, the researchers also looked at the structure and composition of the perovskite films made with the solutions produced, which enabled them to identify several key reactions that caused their degradation, said lead PhD researcher Mary O’Kane.

Making perovskites more durable has become a focal point of several university studies over the past year after both the European Commission and US Department of Energy pledged to support the growth of domestic solar manufacturing markets. Scientists from Queensland University of Technology (QUT) used hair clippings from a barber shop to form an “armour” that increases the material’s power conversion efficiency last month, while a team at the Massachusetts Institute of Technology (MIT) applied a “data fusion” process to test different formulations and assess their longevity. More recently, a joint study by researchers at the University of Bath and Imperial College London examined how important the selection of separate layers within perovskite can prevent degradation.

Read Next

June 26, 2025
International researchers led by King Abdullah University of Science and Technology (KAUST) have developed a new cooling technology that improves the power and longevity of solar cells.
June 26, 2025
Researchers at the Solar Energy Research Institute of Singapore (SERIS) have claimed a record 26.4% conversion efficiency in a perovskite-organic tandem cell.
Premium
June 13, 2025
SNEC 2025 takeaways: TOPCon modules set benchmark power at 650W, a wave of BC modules and perovskite tandem cells gains momentum.
June 2, 2025
A new manufacturing method has produced tandem perovskite-silicon tandem solar cells with a conversion efficiency of 27.8%.
May 28, 2025
The expansion is 100% compliant with the Indian government's requirement of Bureau of Indian Standards (BIS).
May 28, 2025
ISC Konstanz is working with US solar cell manufacturer Suniva on its 1GW silicon solar cell production facility in the state of Georgia.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece