Study suggests new route for perovskite solar cells

Share on facebook
Share on twitter
Share on linkedin
Share on reddit
Share on email
Image: Imperial College London

Researchers from the University of Bath and Imperial College London have shown in a new report how the careful selection of layers within perovskite can prevent against degradation, potentially paving the way for the development of high-performance solar cells.

The report, which was published in the journal Nature Communications, aimed to show how to increase the longevity of tin-based perovskites, to help develop the material without lead. Although lead is less reactive to ambient conditions, solar manufacturers are increasingly trying to work with less toxic materials to create solar systems that are both safe and stable.

As the report notes, the widespread commercial scale up of lead perovskite solar cells “raises concerns in relation to potential health and environmental hazards that their Pb content may cause.”

The researchers found that perovskites using tin instead of lead degrade to tin iodide, and then when this is exposed to moisture and oxygen, forms iodine, causing more tin iodide and “cycling degradation”.

Professor Saif Haque, lead researcher on the report at Imperial College’s Department of Chemistry, said that understanding how and why tin perovskite materials degrade “will help us overcome a major stumbling block for this exciting new technology”.

Once the degradation process of tin perovskite was observed, the researchers found that the material’s stability “strongly” depends on what element of the hole transport layer­ – which allows for the passage of air – is chosen as the substrate, which provides the surface and is used to tackle film degradation.

The study, the report states, “sheds new light upon critical features of the degradation mechanism of hybrid tin iodide perovskites.”

It follows a string of fresh research into making perovskite more durable for use in solar panels over the past year. Scientists from Queensland University of Technology (QUT) used hair clippings from a barber shop in Brisbane to form an “armour” that increases the material’s power conversion efficiency in solar cells last month, while a team at the Massachusetts Institute of Technology (MIT) alongside five other universities globally applied a “data fusion” process to produce and test different perovskite formulations and assess their longevity. At the end of last year, perovskite solar cell developer Oxford Photovoltaics (PV) broke its own industry cell efficiency record after months of research on tandem silicon heterojunction/perovskite 2T (Terminal) solar cells, which has been certified by the US National Renewable Energy Laboratory (NREL) at 29.52%.

Earlier this year  the US’ new Energy Secretary, Jennifer Granholm, outlined a US$128 million funding package for research and development to build out a domestic solar manufacturing sector. As part of this, US$40 million will be allocated to 22 projects that will explore making perovskite-based solar technologies that are more efficient, cheap and durable. The DOE said last year that these cells have the “potential to make highly efficient thin-film solar cells with very low production costs.”

Read Next

June 8, 2021
The US Department of Energy (DOE) aims to bring the cost of making clean hydrogen down 80% in 10 years as part of a wider call for new developments in the energy sector.
June 1, 2021
Renewables investor Magnora AG has said it will increase its investment in perovskite solar specialist Evolar, taking a 40.7% stake in the company.
May 31, 2021
Researchers at the University of Sheffield have found a new way to extend the life of perovskite materials by more than three months, paving the way for new solar cell technologies.
PV Tech Premium
May 13, 2021
US Energy Secretary Jennifer Granholm is extending an olive branch to global policy makers to advance the country’s own renewable energy technology and meet President Biden’s climate targets. Edith Hancock has all the detail on how she intends to amend four years of faltering progress.
May 12, 2021
Integrated solar roofing firm GAF Energy has started moving its manufacturing base from Asia and building out its first combined research and development (R&D) and manufacturing centre in San Jose, California.
April 27, 2021
Switzerland-headquartered PV module manufacturer Meyer Burger has formally unveiled its range of heterojunction (HJ) solar modules for mass production.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
July 6, 2021
Solar Media Events
August 24, 2021
Solar Media Events, Upcoming Webinars
October 6, 2021