Study finds human hair can improve performance of perovskite cells

April 12, 2021
Facebook
Twitter
LinkedIn
Reddit
Email
Image: QUT.

Scientists in Australia have used human hair clippings from a Brisbane barbershop to create an ‘armour’ that increases the power conversion efficiency of perovskite solar cells.

The researchers from Queensland University of Technology (QUT) used hair to create carbon dots – nanoparticles smaller than around 10 nanometres – which form a wave-like perovskite layer where the perovskite crystals are surrounded by the carbon dots.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

According to lead researcher Professor Hongxia Wang, the process protects perovskite material from moisture or other environmental factors: “It creates a kind of protective layer, a kind of armour.”

Having previously found that nanostructured carbon materials could be used to improve a cell’s performance, Professor Wang’s team’s latest research discovered that perovskite solar cells covered with the carbon dots had a greater stability than perovskite cells without the carbon dots.

Professor Wang said the main challenges in perovskite solar cell production include ensuring the stability of the device so that it is able to operate for 20 years or longer, as well as the development of a manufacturing method that is suitable for large-scale production.

“Currently, all the reported high-performance perovskite solar cells have been made in a controlled environment with extremely low level of moisture and oxygen, with a very small cell area which are practically unfeasible for commercialisation. To make the technology commercially viable, challenges for fabrication of efficient large area, stable, flexible, perovskite solar panels at low cost needs to be overcome,” she added.

As part of funding announced last year by the Australian Renewable Energy Agency (ARENA), a team at the University of Sydney is exploring how to improve the energy-conversion efficiencies and durability of emerging silicon-perovskite photovoltaic cell technologies. Some AU$2.5 million (US$1.9 million) was awarded to the researchers as part of a wider AU$15.14 million solar research package to support projects across Australia in areas such as advanced silicon, new materials development and sustainable end-of-life management of panels.

Elsewhere, scientists at the Massachusetts Institute of Technology have found a new approach to narrowing the search for the best candidates for long-lasting perovskite formulations. By testing less than 2% of the combinations among three components making up perovskite material, the researchers believe they have found what appears to be the “most durable” perovskite solar cell material to date.

Read Next

Sponsored
October 23, 2025
Tongwei's rooftop-focused TNC 2.0 G12R-48 module will be among the products on show at All Energy Australia next week.
October 23, 2025
Spanish power electronics specialist Ingeteam has won a contract to supply inverters and control systems for European Energy Australia's 100MW Winton North solar-plus-storage project in northeast Victoria.
October 23, 2025
Queensland's rooftop solar systems have exceeded 5GW of output for the first time, marking a milestone in Australia's solar expansion.
October 22, 2025
The Queensland government has launched the Social Licence in Renewable Energy Toolkit, providing local councils in Australia with resources to navigate renewable energy project engagement and community consultation processes.
October 21, 2025
Australia's solar-plus-storage sector gained momentum with 725MW of solar PV approvals advancing across New South Wales and Queensland.
October 21, 2025
Luminous Robotics has successfully completed its first international deployment of AI-powered solar installation robots at Engie’s 250MW Goorambat East Solar Farm in Victoria, Australia.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany