Trina Solar sets 23.5% IBC cell conversion efficiency record for screen printed process

April 26, 2016
Facebook
Twitter
LinkedIn
Reddit
Email
Independently confirmed by the Japan Electrical Safety & Environment Technology Laboratories (JET), Trina Solar set the conversion efficiency record at 23.5%, using 156x156 mm2 n-type monocrystalline silicon (c-Si) wafers and a screen-printed process. Image: Trina Solar

Updated: Leading ‘Silicon Module Super League’ (SMSL) member Trina Solar said it had achieved a new world record for a large-area Interdigitated Back Contact (IBC) solar cell. 

Independently confirmed by the Japan Electrical Safety & Environment Technology Laboratories (JET), Trina Solar set the conversion efficiency record at 23.5%, using 156×156 mm2 n-type monocrystalline silicon (c-Si) wafers and a screen-printed process.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Dr. Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar said, “To the best of our knowledge, this is the first time that a mono-crystalline silicon IBC solar cell with an area of 238.6 cm2 exhibits a total-area conversion efficiency of 23.5%. Interdigitated Back Contact (IBC) silicon solar cells are the most efficient silicon solar cells to date but require a complicated fabrication process. Trina Solar has been developing IBC solar cells since the establishment of its State Key Laboratory with the objective to reach record efficiencies with the lowest possible cost. From the beginning we developed a scalable technology for IBC solar cells around large-area 156mm x 156mm wafers as we believe that the wafer size is the key to manufacturing cost reduction of this efficient solar cell.”

Trina Solar had previously set a screen-printed IBC cell record at 22.94% in May, 2014 and has continued to develop the cell in collaboration with the Australian National University (ANU) in Canberra, Australia.

However, as a PV Tech reader has pointed out, Japan-based Kaneka Corporation is set to present a paper at the 43rd IEEE Photovoltaic Specialists Conference in June, highlighting it had achieved a large-area heterojunction technology-based (HJBC) solar cell with a cell conversion efficiency of 24.5% and a cell of 24.9% that was independently confirmed at AIST that adopted a cell structure and optimised insulator layer deposition techniques that suppressed rear electrode resistance. 

13 October 2026
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 13-14 October 2026 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023, 2024 and 2025 were a sell out success and 2026 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

February 5, 2026
Vietnam is the cheapest country to produce fully domestic solar modules outside of China, according to a report from the International Renewable Energy Agency (IRENA).
February 5, 2026
Explainer: Two new studies offer fresh insights into the performance of TOPCon solar modules, including a new degradation mode related to encapsulants.
February 4, 2026
US authorities have hit back at a WTO ruling that subsidies for domestically produced solar and other clean energy components discriminate against Chinese firms.
February 2, 2026
India’s Union Budget 2026-27 reinforces government support for renewables through duty exemptions and infrastructure spending.
January 29, 2026
The cost of Chinese solar module manufacturing will rise in the first half of 2026, though prices may fall again before the end of the year.
Premium
January 26, 2026
The removal of a tax rebate for Chinese PV exports is set to drive up module prices as overseas buyers rush to secure lower-priced products.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA