Trina Solar sets 23.5% IBC cell conversion efficiency record for screen printed process

Facebook
Twitter
LinkedIn
Reddit
Email
Independently confirmed by the Japan Electrical Safety & Environment Technology Laboratories (JET), Trina Solar set the conversion efficiency record at 23.5%, using 156x156 mm2 n-type monocrystalline silicon (c-Si) wafers and a screen-printed process. Image: Trina Solar

Updated: Leading ‘Silicon Module Super League’ (SMSL) member Trina Solar said it had achieved a new world record for a large-area Interdigitated Back Contact (IBC) solar cell. 

Independently confirmed by the Japan Electrical Safety & Environment Technology Laboratories (JET), Trina Solar set the conversion efficiency record at 23.5%, using 156×156 mm2 n-type monocrystalline silicon (c-Si) wafers and a screen-printed process.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Dr. Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar said, “To the best of our knowledge, this is the first time that a mono-crystalline silicon IBC solar cell with an area of 238.6 cm2 exhibits a total-area conversion efficiency of 23.5%. Interdigitated Back Contact (IBC) silicon solar cells are the most efficient silicon solar cells to date but require a complicated fabrication process. Trina Solar has been developing IBC solar cells since the establishment of its State Key Laboratory with the objective to reach record efficiencies with the lowest possible cost. From the beginning we developed a scalable technology for IBC solar cells around large-area 156mm x 156mm wafers as we believe that the wafer size is the key to manufacturing cost reduction of this efficient solar cell.”

Trina Solar had previously set a screen-printed IBC cell record at 22.94% in May, 2014 and has continued to develop the cell in collaboration with the Australian National University (ANU) in Canberra, Australia.

However, as a PV Tech reader has pointed out, Japan-based Kaneka Corporation is set to present a paper at the 43rd IEEE Photovoltaic Specialists Conference in June, highlighting it had achieved a large-area heterojunction technology-based (HJBC) solar cell with a cell conversion efficiency of 24.5% and a cell of 24.9% that was independently confirmed at AIST that adopted a cell structure and optimised insulator layer deposition techniques that suppressed rear electrode resistance. 

Read Next

October 9, 2025
The retroactive collection of duties on historical solar imports to the US has been temporarily paused pending the outcome of an appeal.
October 8, 2025
University of Sydney scientists have created the largest and most efficient triple-junction perovskite-perovskite-silicon solar cell on record.
Premium
October 6, 2025
Talon PV aims to be the first US company to safely manufacture TOPCon cells at scale, backed by European technology and a crucial First Solar licensing deal.
October 3, 2025
The US solar manufacturing industry is feeling bullish, despite the policy whiplash inflicted over the summer and the increased pressure on US solar supply chains.
October 2, 2025
PV products using perovskite technology could assume a dominant position within the next ten years, according to module producer Qcells' CTO.
Premium
October 2, 2025
PV Talk: Qcells’ CTO Danielle Merfeld discusses the imminent opening of America’s first integrated c-Si ingot-to-module factory and her belief in solar’s long-term strengths.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK