UVID is ‘particularly concerning’ for TOPCon cells – UNSW

Facebook
Twitter
LinkedIn
Reddit
Email
The new research finds that different parts of the UV spectrum affect TOPCon cells differently. Image: Jolywood.

Greater awareness of the type of ultraviolet (UV) light used to test solar cells could result in faster, more efficient assessments of long-term performance.

This is according to new research led by academics at the University of New South Wales (UNSW), which has assessed the impact of UV light on tunnel oxide passivated contact (TOPCon) solar cells. These cells have become the dominant industry technology over the last two years.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

TOPCon has made industry headlines with issues around its longevity under stress, even as it has come to mainstream prominence. As well as issues under damp and hot conditions, UV-induced degradation (UVID) has emerged as a new limitation on TOPCon’s lifespan in the field.

The researchers said: “UVID is particularly concerning due to the increasing use of UV-transparent encapsulants in photovoltaic modules, which enhances module efficiency but exposes solar cells to UV radiation during operation.” 

PV quality testing firm Kiwa PVEL found that TOPCon and other high-efficiency solar technologies are more susceptible to UVID than older technologies in its most recent Module Scorecard report. Kiwa PVEL wrote about this phenomenon exclusively for PV Tech last month.

The new research, published in the journal Solar Energy Materials and Solar Cells, finds that different parts of the UV spectrum affect TOPCon cells differently. Moreover, new manufacturing methods seeking to increase module power and efficiency may actually increase the risk of UVID degradation, and affect long-term performance.

UV-B radiation

The paper focuses on UV-B radiation. This type of light “has a significantly higher photon energy than UV-A,” which is more commonly considered in PV testing and is “closer to visible light” than UV-B.

UV-B “is generally not seen as a major concern as most commercial encapsulants effectively block UV-B radiation,” the researchers said, “leading to a perception that UV-B degradation might not be a significant concern for fielded modules.”

It continued: “However, the continuous pressure to increase module power is pushing companies to explore encapsulants with a higher UV transmission.”

Exposure to UV-B can cause increased surface recombination on the front side of TOPCon solar cells, the research said, which ultimately decreases the cell’s efficiency and accelerates its degradation.

“It was demonstrated that UV radiation, particularly UV-B, causes significant degradation of the front surface passivation of TOPCon structure, resulting in increased surface recombination,” the paper said.

The testing also revealed “the complex role between hydrogen and UVID in TOPCon solar cells”. UV radiation releases hydrogen in the solar cell, which can contribute to surface recombination and degradation.

“The data confirms that while both types of UV radiation impact the front surface, higher energy photons of UV-B break more Si-H bonds, leading to more pronounced degradation,” the research said.

The paper posits that future TOPCon researchers will need to pay attention to the role of UVID on the cells, particularly from UV-B, to ensure the technology has a consistent lifespan to maximise solar efficiency and plant affordability.

It said: “By utilising UV-B, a faster and more efficient assessment of the long-term performance of solar cells can be achieved.”

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

August 6, 2025
The Indian Ministry of New and Renewable Energy (MNRE) has published the approved list of models and manufacturers (ALMM) for solar cells, which contains 13GW of annual nameplate capacity across six manufacturers.
August 6, 2025
A subsidiary of JinkoSolar has filed a lawsuit in Munich accusing LONGi Green Energy and several subsidiaries of infringing on a solar cell manufacturing patent.
August 5, 2025
China’s leading polysilicon firms are reportedly considering shutting down one third of the country’s polysilicon capacity and restructuring the sector, following years of overcapacity and tumbling prices.
August 4, 2025
US solar PV recycling firm, Solarcycle, has produced a pilot module using 50% recycled glass from other decommissioned panels, which it says matches the performance of entirely new products.
August 1, 2025
The Q3 edition of our downstream solar PV journal, PV Tech Power, is now available to download.
July 30, 2025
Donald Trump has announced a 25% tariff on all imports entering the US from India from the 1st August 2025.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines