Qcells boasts ‘world record’ 28.6% efficiency M10 size perovskite-silicon cell

Facebook
Twitter
LinkedIn
Reddit
Email
“This result is laying the groundwork for future commercialisation of this exciting technology”, said RObert Bauer. Image: QCells

Korean-owned solar manufacturer Hanwha Qcells has posted a “world record” efficiency reading for an industrial-sized perovskite-silicon tandem cell.

The 28.6% efficiency rating was certified by the CalLab at the Fraunhofer Institute for Solar Energy Systems (ISE). The cell – which is a full M10-sized product of roughly 330.56 cm2 – was produced at Qcells’ research and development (R&D) pilot line in Germany.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The current industry standard for perovskite-silicon tandem configurations places a thin perovskite material layer directly on top of a silicon base cell, known as a “two-terminal tandem.” The perovskite—which can be fine-tuned to suit a manufacturer’s needs—can absorb more high-energy light than silicon and can boost cell conversion efficiency when paired with the bottom cell.

Some companies are pursuing “four-terminal” tandem configurations, where the silicon and perovskite cells are encapsulated separately and then layered.

Qcells’ two-terminal product used its proprietary Q.ANTUM cell technology as the bottom cell – a passivated emitter rear contact (PERC) silicon cell.

Robert Bauer, head of Qcells R&D in Germany, said the record-breaking cell was “based on our in-house developed perovskite technology as a top cell, and cost-efficient Q.ANTUM silicon technology as a bottom cell. The champion cell is a typical cell from our R&D pilot line in Germany and has been fabricated by exclusively using processes that are feasible for mass production. This result is laying the groundwork for future commercialisation of this exciting technology.”

Qcells said its German R&D centre in Bitterfeld-Wolfen is financially supported by the German government and the European Commission through the PEPPERONI perovskite research project. The company is one of the leaders of the PEPPERONI project, alongside research institute Helmholtz-Zentrum Berlin (HZB), which aims to pursue scalable research for the commercial manufacturing of perovskite tandem products.

Last week, six Fraunhofer institutes published research which said that perovskite-silicon tandems were the “prerequisite” technology to reach the next generation of solar cell and module technology. The five-year research project said perovskite was the leading technology for tandem cells, though it failed to find an alternative to the use of toxic lead in the cells’ production.   

Perovskite-silicon tandem products have yet to be mass-produced because the material degrades at far higher rates than silicon when removed from controlled laboratory conditions. Earlier this year, British perovskite company Oxford PV shipped what it called the first commercial tandem modules from its manufacturing line in Brandenburg, Germany.

Earlier this week, we published the 41st edition of PV Tech Power, our downstream industry journal. The cover feature examined the “hope and hype” of perovskite solar technology, where we spoke with leading figures from the PEPPERONI project, Oxford PV and the US National Renewable Energy Laboratory (NREL) alongside sceptics of perovskite-silicon tandem technology.

6 February 2025
2:00pm GMT
FREE WEBINAR - Ahead of PV Tech’s flagship manufacturing event, PV CellTech, taking place in Frankfurt, Germany on 11-12 March 2025, this special webinar will evaluate the prospects for manufacturing wafers, cells and modules in Europe. What is stopping investments? Where are the green shoots likely to come from? How can the European PV sector successfully galvanise its established know-how in research and production equipment availability? The webinar will feature contributions from some of the most promising manufacturing developments in Europe today, in addition to expert analysis and perspectives from the U.S. and what is needed to be put in place to stimulate new factory investments and manufacturing profitability.
11 March 2025
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.
17 June 2025
Napa, USA
PV Tech has been running PV ModuleTech Conferences since 2017. PV ModuleTech USA, on 17-18 June 2025, will be our fourth PV ModulelTech conference dedicated to the U.S. utility scale solar sector. The event will gather the key stakeholders from solar developers, solar asset owners and investors, PV manufacturing, policy-making and and all interested downstream channels and third-party entities. The goal is simple: to map out the PV module supply channels to the U.S. out to 2026 and beyond.
7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

January 17, 2025
The letter said the IRA has brought “significant investments in the health of our economy" and US$500 billion in manufacturing investments.
January 17, 2025
The domestic content bonus could attract bipartisan political support and insulate the IRA ahead of Donald Trump's inauguration next week.
January 17, 2025
According to Qcells, the recipient companies are allegedly producing and selling products using laser enhanced contact optimization technology, for which it holds the patent.
January 17, 2025
Emirati state-owned renewable energy project developer Masdar has entered the Philippines market with plans to develop 1GW of solar PV, wind and battery energy storage systems (BESS).
January 17, 2025
Australia’s Energy Corporation of New South Wales (EnergyCo) has formally increased the amount of renewable energy generation and energy storage projects that can connect to the Central-West Orana Renewable Energy Zone (REZ) to 7.7GW.
January 16, 2025
Following a US government forced labour investigation, Europe's Solar Stewardship Initiative has launched its own inquiries.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
February 4, 2025
London, UK
Solar Media Events
February 17, 2025
London, UK
Solar Media Events
February 26, 2025
Seattle, USA