How do you solve a problem like the grid?

Facebook
Twitter
LinkedIn
Reddit
Email
Different network operators have come up with numerous solutions to allow for more significant quantities of renewables on their grids. Image: SMA.

In a year that has witnessed marked advancements in the stated power of solar modules, documented significant decreases in levelised cost of electricity and seen financiers sidestep warnings of the deepest economic recession in living memory, it would be easy to consider there nothing left in solar PV’s path to domination of the power market. But ask any seasoned developer to name one issue that continues to be a thorn in the technology’s side, and the majority – if not all – will return the same answer: The grid.

In reality, the grid is not a particularly new or emergent obstacle to solar, or indeed the wider renewables sector. Shelved as an ‘intermittent’ or ‘variable’ generator, renewables’ relationship with the grid hasn’t exactly been harmonious since the first great quantities of renewable power were connected. Most electricity grids are decades old, consisting of legacy infrastructure that creaks under modest pressure, and managing an influx of nascent technologies has become an unenviable task of spinning many, many plates, all at once.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

More established solar markets are now feeling the pinch years of express renewables connections, with grid connection capacity sparse and, in some regions, almost non-existent. Solar-rich regions such as the UK’s south coast and Extremadura in Spain are now near battlegrounds for grid connection agreements, battling it out for whatever scrap of spare capacity they can identify. Queues can be lengthy, backed up by a sea of requests. Earlier this summer, Spain’s backlog of renewables projects vying for grid connection agreements was said to have stood at hundreds of gigawatts, a figure one developer described as “mindboggling”. And as supply and demand dynamics play out, the result is grid connection agreements skyrocketing in price. Another UK-based developer told this publication that the sums quoted to his company for a grid connection agreement were “astronomical” compared to what they have been historically.

Some markets have indeed been handed legislative support. A national decree on grid access in Spain, passed earlier this year, requires guarantees to be paid for grid connection agreements and certain project milestones to be met at specific deadlines. If those deadlines are missed without good reason, permits are deemed null and void, and the project cannot connect to the grid. A similar policy was enforced two years ago in the UK, after two of the country’s distribution network operators (DNOs) fired warnings at so-called “Grid Grabbers” – described as companies amassing grid connection agreements only to idle projects or attempt to sell them on at profit – outlining measures to prevent distribution grids from descending into a “wild west scenario”. Comprehensive evidence of intent to proceed with projects is now required for a permit to be granted.

Visibility also remains problematic, both in terms of spare capacity and what, exactly, is connected to distribution grids. A study conducted by UK DNO Western Power Distribution last year uncovered thousands of connected distributed energy resources – commonly residential solar installs and electric vehicle chargers – that were not acknowledged in its system, seemingly caused by installers failing to file the proper paperwork. Last September the UK’s electricity system operator National Grid ESO launched its own study to map out so-called “invisible” solar panels on the country’s networks in order to improve its own forecasting.

Grid capacity is, unfortunately, a finite resource and not every solar farm, battery storage facility – or combination thereof – will be able to connect to the grid. And with distribution grid improvements or capacity expansions proving extortionate, coupled with a lack of political will to pass those costs onto the consumer, attention has turned onto better understanding how to eke out every last spare drop of grid capacity, either through more flexible connection agreements, better understanding generation portfolios, or the adoption of more novel technologies.

Knowing your load

One particular lesson that most seasoned developers will share is to work with your network operator, and not around them, and identify precisely what kind of load and generation profile you intend to connect. In markets where grid capacity constraints have been long-standing, there have been many examples of renewables operators being able to find middle grounds that support, rather than hinder, development. Given their longstanding nature and how critical they are to revenue generation, the grid connection agreement is without question the most valuable part of the asset, so work to maximise its value.

In the UK, some DNOs offer more flexible grid connection agreements, wherein network operators identify an optimum export cap for any given site which the asset owner can agree to. Any generation that exceeds that cap is essentially dumped, sparing capacity issues on the network and allowing new projects to come forward. Some also include allowances for curtailment notices.

More recently, network operators in the Netherlands struck an agreement with renewables organisations in the country which promise to accelerate the grid connection process. The deal, enshrined within a legal covenant, sees solar operators agree to maximum export limits of 70% of its peak generation capacity – reflecting how a solar asset’s performance only exceeds that figure for around 3% of its operational lifespan – in exchange for grid operators identifying more spare capacity on the grid.

This is an extract of an article first published in Volume 25 of PV Tech Power. The full article can be read in the full digital copy of PV Tech Power 25, which can be downloaded via the PV Tech Store here

2 December 2025
Málaga, Spain
Understanding PV module supply to the European market in 2026. PV ModuleTech Europe 2025 is a two-day conference that tackles these challenges directly, with an agenda that addresses all aspects of module supplier selection; product availability, technology offerings, traceability of supply-chain, factory auditing, module testing and reliability, and company bankability.
10 March 2026
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.

Read Next

September 11, 2025
The PEARL Consortium has developed perovskite solar cells with carbon electrodes with a conversion efficiency of 21.6%.
September 11, 2025
The EBRD has launched a new programme to improve access to green financing and support energy investments such as renewable power projects.
September 10, 2025
A project claimed to be Germany’s largest agriPV plant has been commissioned in the north-east of the country.
September 9, 2025
The average price of solar modules sold in Europe fell marginally between July and August, while buyers’ confidence remained steady.
September 8, 2025
France has awarded 971MW of ground-mount solar capacity, to 165 projects, in the eighth round of the PPE2 PV tender.
September 5, 2025
Scientists from Germany and Saudi Arabia have discovered that perovskite thin-film cells are compatible with current industry standard silicon solar cells, which they claim is a “crucial step toward the industrialisation of perovskite silicon tandem solar cells”.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines