Discover our upstream and downstream technical journals
Endeas said it had developed a new method to counter the issues. Its Capacitance Compensation (CAC) technique is said to measure the steady-state I-V curve and maximum power of any PV cell or module based on a single flash pulse of only 40 ms. The method is included in its QuickSun 600 system, an all-in-one module testing station. Image: Endeas Oy

Endeas said it had developed a new method to counter the issues. Its Capacitance Compensation (CAC) technique is said to measure the steady-state I-V curve and maximum power of any PV cell or module based on a single flash pulse of only 40 ms. The method is included in its QuickSun 600 system, an all-in-one module testing station. Image: Endeas Oy

PV module equipment measurement specialist Endeas Oy has developed a new method to measure the steady-state I-V curves in PV modules using high-efficiency solar cells such as PERC, and especially HJT or IBC as solar simulators currently in production applications have limited accuracy, according to the company.

Endeas noted that when measuring I-V curves and maximum power of high-efficiency PV modules, inaccuracies can be discovered, due to the charging of the cells, which leads to a significant underestimation of the maximum power by typical flash testers. 

The company noted that increasing the flash pulse length to overcome the issue becomes expensive and comes with additional problems, such as heating of the module during measurement.

Endeas said it had developed a new method to counter the issues. Its Capacitance Compensation (CAC) technique is said to measure the steady-state I-V curve and maximum power of any PV cell or module based on a single flash pulse of only 40 ms. The method is included in its QuickSun 600 system, an all-in-one module testing station.

The Capacitance Compensation method will be presented at the EU PVSEC conference in Brussels on 24 September 2018 by Dr. Henri Vahlman, a scientist at Endeas.

“PV manufacturers are understandably requesting longer and longer flash pulses. They are aware that the maximum power of their high-efficiency products may be underestimated by their current solar simulators, leading them to sell their products at a lower price than necessary”, said Jaakko Hyvärinen, managing director of Endeas. “The new CAC method is perfectly suited for power measurements in PV manufacturing, as measurement results comparable to steady-state solar simulators can be provided for any PV technology with compact and proven flash testers that are straightforward to integrate into a manufacturing line.”

Endeas said that the CAC method was based on measuring the capacitance (ability to store electric charge) of the tested device during the flash pulse. The measured capacitance was taken into account in processing the measurement data, resulting in more accurate steady-state I-V curves and maximum power measurements, according to the company.

Tags: endeas oy, c-si manufacturing, pv modules, solar cell, perc, ibc solar cell, heterojunction solar cell, pv moduletech, eu pvsec

Solar Media Events

PV ModuleTech

Mar 10 - Mar 12, 2021

Penang, Malaysia (also available virtually)

Understand fully the technical and logistical supply chains that determine the production and performance of solar modules, including all related factors impacting quality, reliability & bankability. This event will be run as a live event in Penang for delegates able to attend and will also welcome virtual delegates via streamed content and online networking.

Find out more

Solar Media Events

PV CellTech

Oct 27 - Oct 29, 2020

Virtual Event

Going into its fifth year over 200 delegates from 150 companies and 20 countries representing the PV supply chain will gather (virtually, due to COVID-19) for 3 days to discuss the technology roadmaps for PV cell advancement in GW markets. The scope of the event has been expanded this year, to cover developments in wafer supply and thin-film investments and technologies alongside all the regular benefits to all stakeholders tracking PV technology and investment trends for the next 5 years.

Find out more

Comments