NREL: efficiency and production capacity key for commercial perovskite tandem modules

January 10, 2025
Facebook
Twitter
LinkedIn
Reddit
Email
Oxford PV shipped the first commercial tandem modules from its plant in Germany this year. Image: Oxford PV

Solar module efficiency and nameplate production capacity are the “most significant” factors in reducing the manufacturing costs of perovskite-silicon tandem solar technology, according to a recent study from the US National Renewable Energy Laboratory (NREL).

The report said that tandem modules need a minimum efficiency of 25% to be competitive with other solar technologies on price. Higher conversion efficiency reduces a module’s cost per watt.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The research also concluded that doubling factory output would achieve the same cost reduction as increasing efficiency by 2.5%.

The NREL researchers, led by Jacob Cordell, found that two-terminal tandem modules have a minimum sustainable price (MSP) of US$0.428/Wdc and four-terminal modules of $0.423/Wdc. This assumes a 25% efficiency rate and a 3GW annual nameplate production volume in the US.

Two-terminal tandem products are those where perovskite and silicon layers are encapsulated within the same cell, whereas four-terminal products encapsulate a perovskite and a silicon cell separately and layer them atop one another.

Cordell said that the paper, published in the journal Joule, answers the question of the “value” of higher efficiency solar products.

“One key takeaway is that a 2.5% absolute efficiency gain in a module provides the same reduction in cost per nameplate capacity as doubling the size of your factory,” he said.

“That shows the power of research for improving the efficiency of the device and reducing the cost per watt of the module.”

The researchers claimed that this study “identifies pathways for tandem modules to compete in cost with incumbent solar PV modules, which already make up the largest generating capacity added to global grids each year. Commercialising tandem modules offers an opportunity to expedite the transition to renewable and sustainable energy sources and improve the value of the energy generating technologies we deploy.”

In one notable detail, the report said that the cell architecture of the silicon bottom cell in a tandem product also had a “significant” impact on cost and competitiveness. Solar manufacturers and research houses are taking different approaches to tandem cells; JinkoSolar recently recorded a new milestone for a tandem cell using n-type tunnel oxide passivated contact (TOPCon) silicon technology, while Hanwha Qcells announced a “world record” efficiency for an industrial-sized tandem cell using PERC technology.

British perovskite company Oxford PV shipped what it called the “first” commercial tandem modules earlier last year, based on heterojunction technology (HJT) cells.

Besides Oxford PV’s announcement, the solar industry is yet to commercialise perovskite-silicon tandem technology at scale. This is largely due to the instability and degradation of the material, which is far more reactive than silicon. PV Tech Premium spoke with Radovan Kopecek last year, co-founder of ISC Konstanz in Germany, who believes that the technology will never progress past niche applications.

However, many of the world’s major solar manufacturers and research institutions are putting significant time and money into perovskite-silicon tandem research. We examined the potential routes to market and the variations in perovskite technology in the most recent edition of our downstream journal, PV Tech Power.

13 October 2026
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 13-14 October 2026 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023, 2024 and 2025 were a sell out success and 2026 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

January 30, 2026
India Power Corporation Limited has partnered with Bhutan’s Green Energy Power Private Limited to develop a 70MWp solar power plant in Paro, Bhutan
January 30, 2026
 Scatec has reported strong fourth-quarter results with proportionate revenues increasing 25% year-on-year to NOK3,362 million (US$2.68 billion).
Premium
January 30, 2026
In an interview with PV Tech Premium, two UNSW researchers emphasise the need for enhanced UV testing for TOPCon solar cells.
January 29, 2026
The cost of Chinese solar module manufacturing will rise in the first half of 2026, though prices may fall again before the end of the year.
January 29, 2026
PV module defects are increasing as manufacturers struggle to achieve consistent quality through robust bill-of-material and process controls.
January 29, 2026
Renewables-specific M&A platforms offer project buyers and sellers transparency and efficiency in Europe’s increasingly selective deal environment, writes Ksenia Dray.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA