Hanwha Q CELLS’ touts success of its anti-LeTID module performance in Fraunhofer CSP tests

Facebook
Twitter
LinkedIn
Reddit
Email
Both Hanwha Q CELLS' half-cell monocrystalline ‘Q.PEAK DUO’ modules and multicrystalline ‘Q.PLUS’ modules were reported to have exhibited little impact due to LeTID, this among nine module types tested by Fraunhofer CSP. Image: Hanwha Q CELLS

Recently billed by solar industry experts as another degradation crisis that could be worse than the impact on PV module performance than PID (potential Induced Degradation), ‘Silicon Module Super League’ (SMSL) member, Hanwha Q CELLS has highlighted that both its mono and multicrystalline products have performed exceptionally well in LeTID (Light and elevated Temperature Induced Degradation) tests undertaken by Fraunhofer CSP.

Both Hanwha Q CELLS' half-cell monocrystalline ‘Q.PEAK DUO’ modules and multicrystalline ‘Q.PLUS’ modules were reported to have exhibited little impact due to LeTID, this among nine module types tested by Fraunhofer CSP.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Hanwha Q CELLS' two different module types exhibited <1% power loss during Fraunhofer CSP's testing procedure.

Hanwha Q CELLS' monocrystalline (Cz-Si) and multicrystalline (mc-Si) solar modules performed favorably when exposed to accelerated LeTID test conditions (CID -- current-induced degradation at 75°C and operation in maximum power point (MPP) mode) compared to other solar module brands tested. Image and results were presented at the EU PVSEC conference in September titled: Benchmarking Light and Elevated Temperature Induced Degradation (LETID). Image: Fraunhofer CSP

Hanwha Q CELLS Co., Ltd. CTO Daniel Jeong said: “The performance of our Q.PEAK DUO and Q.PLUS modules demonstrates Hanwha Q CELLS' continued commitment to tackling the toughest challenges in the industry and highlights the importance of focusing our R&D efforts in areas where we can deliver the most added value to our customers.”

“Hanwha Q CELLS is proud to be at the forefront of anti-LeTID technology and will continue to shape and support the solar industry by developing new photovoltaic technologies and tackling head-on the technical hurdles that arise. We do this to ensure that our products are the go-to option for discerning developers who want to install quality that lasts and performs reliably, regardless of the conditions,” assed Jeong.

Recently, PV Tech posted a technical blog from Radovan Kopecek, Joris Libal and Lejo J. Koduvelikulathu from ISC-Konstanz on LeTID, which can be found here.

Read Next

October 8, 2025
US solar module prices jumped in Q3 2025 as developers scrambled to meet the 2 September 2025 safe harbour deadline for Investment Tax Credit (ITC) qualification, according to supply chain platform Anza.
October 8, 2025
University of Sydney scientists have created the largest and most efficient triple-junction perovskite-perovskite-silicon solar cell on record.
October 8, 2025
Saatvik Green Energy has secured new solar PV module orders worth more than INR7 billion (US$84 million), to be delivered in this financial year.
October 7, 2025
Econergy will acquire 100% stake in the 155MW Ratesti solar project in Romania, further expanding its European renewable energy portfolio.
October 7, 2025
Juniper Green Energy through its subsidiary Juniper Green Sigma Eight has signed a 70MW power purchase agreement with renewable energy giant Tata Power. 
October 7, 2025
OpenSolar has secured US$13.1 million in equity financing from technology investors, including Titanium Ventures, Google and others.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK