Product Review: Kyoshin Electric offers accurate solar cell IV measurement

June 1, 2016
Facebook
Twitter
LinkedIn
Reddit
Email
The KSX-3000H shares the same light source as the KSX-1000 but uses an improved IV measuring unit and software.

Kyoshin Electric Co (KOPEL) has introduced a high-speed, highly accurate, and highly reproducible solar cell IV measurement system. The KSX-3000H can be used for a wide variety of high-efficiency solar cell architectures including PERC (Passivated Emitter Rear Cell) and heterojunction (HJ).

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

High-efficiency solar cells tend to have higher voltage (capacitance) than conventional cells, which can result in extended time for the solar cell to respond to light and voltage at MPP (maximum power point), potentially leading to incorrect measurements. Cell testing in volume production is also increasing, requiring fast and accurate measurements inline. 

Solution

The KSX-3000H system consists of Class AAA+ solar simulator with better than 0.2% temporal instability, 10% spectral match, and 1.5% spatial non-uniformity that operates at high-speed with accurate measurement without any compensation. The cell setter ensures stable probing and is equipped with temperature control and software that can complete high-speed data processing for high-efficiency cell measurement during continuous or pulsed light exposure.  High-efficiency cell measurement uses Photo & Dark Analysis (KOPEL Method) that has been developed in cooperation with AIST, and this test method can measure HJT / HIT cells that have high hysteresis. The KSX-3000H is applicable to both R&D and volume production lines. The system can keep the IV measurement time within 1 second including the data transmission. The throughput for measurement and selection can be as high as 3,600 cells /h (if the sorter speed allows). Performance of the existing cell production lines, therefore could be upgraded. Not only for normal crystalline silicon or PERC, the production lines for high-efficiency cells such as HJT / HIT can be also upgraded. It is also possible to use our IV tester only with already existing solar simulator.

Applications

The KSX-3000H can be used in R&D and volume production solar cell lines.

Platform

The KSX-3000H shares the same light source as the KSX-1000 but uses an improved IV measuring unit and software. It provides all the benefits of the KSX-1000, such as high measurement accuracy, low maintenance cost, and high throughput. It is generally believed that a very long pulse (300 ms or longer) is needed to measure HJ or similar high-efficiency cells. The IV data using a 50-ms pulse shows very good agreement with the IV data under continuous light and 1000-ms long sweep time; the deviation is only 0.2-0.3%. A chiller unit and a vacuum pump are provided as options for more accurate measurement. The KSX-1000 can also be upgraded to the KSX-3000H simply by replacing the IV measuring unit and software.

Availability

Currently available.

High-efficiency cell measurement uses Photo & Dark Analysis (KOPEL Method) that has been developed in cooperation with AIST, and this test method can measure HJT / HIT cells that have high hysteresis.

Read Next

October 23, 2025
US solar manufacturer T1 Energy sold approximately 725MW of solar modules in Q3 2025, as it continues to expand US manufacturing capabilities.
Sponsored
October 22, 2025
LONGi vice president Dennis She discusses the value logic behind the company's strategic focus on back contact technology.
October 20, 2025
Details of tariffs on US imports of polysilicon products may be announced as early as the end of this month, according to a note from investment bank Roth Capital.
Premium
October 14, 2025
OCI Holdings’ decision this week to buy a Vietnamese solar wafer facility to supply the US solar cell manufacturing industry makes clear the biggest vulnerability facing the sector today.
October 13, 2025
Korean chemical production firm OCI Holdings has acquired a 65% stake in a Vietnamese solar wafer production plant, intending to export solar wafers to the US.
October 13, 2025
US solar manufacturer T1 Energy has acquired a minority stake in fellow US-based solar cell producer Talon PV.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany
Solar Media Events
March 24, 2026
Lisbon, Portugal