Product Review: Kyoshin Electric offers accurate solar cell IV measurement

Facebook
Twitter
LinkedIn
Reddit
Email
The KSX-3000H shares the same light source as the KSX-1000 but uses an improved IV measuring unit and software.

Kyoshin Electric Co (KOPEL) has introduced a high-speed, highly accurate, and highly reproducible solar cell IV measurement system. The KSX-3000H can be used for a wide variety of high-efficiency solar cell architectures including PERC (Passivated Emitter Rear Cell) and heterojunction (HJ).

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

High-efficiency solar cells tend to have higher voltage (capacitance) than conventional cells, which can result in extended time for the solar cell to respond to light and voltage at MPP (maximum power point), potentially leading to incorrect measurements. Cell testing in volume production is also increasing, requiring fast and accurate measurements inline. 

Solution

The KSX-3000H system consists of Class AAA+ solar simulator with better than 0.2% temporal instability, 10% spectral match, and 1.5% spatial non-uniformity that operates at high-speed with accurate measurement without any compensation. The cell setter ensures stable probing and is equipped with temperature control and software that can complete high-speed data processing for high-efficiency cell measurement during continuous or pulsed light exposure.  High-efficiency cell measurement uses Photo & Dark Analysis (KOPEL Method) that has been developed in cooperation with AIST, and this test method can measure HJT / HIT cells that have high hysteresis. The KSX-3000H is applicable to both R&D and volume production lines. The system can keep the IV measurement time within 1 second including the data transmission. The throughput for measurement and selection can be as high as 3,600 cells /h (if the sorter speed allows). Performance of the existing cell production lines, therefore could be upgraded. Not only for normal crystalline silicon or PERC, the production lines for high-efficiency cells such as HJT / HIT can be also upgraded. It is also possible to use our IV tester only with already existing solar simulator.

Applications

The KSX-3000H can be used in R&D and volume production solar cell lines.

Platform

The KSX-3000H shares the same light source as the KSX-1000 but uses an improved IV measuring unit and software. It provides all the benefits of the KSX-1000, such as high measurement accuracy, low maintenance cost, and high throughput. It is generally believed that a very long pulse (300 ms or longer) is needed to measure HJ or similar high-efficiency cells. The IV data using a 50-ms pulse shows very good agreement with the IV data under continuous light and 1000-ms long sweep time; the deviation is only 0.2-0.3%. A chiller unit and a vacuum pump are provided as options for more accurate measurement. The KSX-1000 can also be upgraded to the KSX-3000H simply by replacing the IV measuring unit and software.

Availability

Currently available.

High-efficiency cell measurement uses Photo & Dark Analysis (KOPEL Method) that has been developed in cooperation with AIST, and this test method can measure HJT / HIT cells that have high hysteresis.
7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

September 5, 2025
Scientists from Germany and Saudi Arabia have discovered that perovskite thin-film cells are compatible with current industry standard silicon solar cells, which they claim is a “crucial step toward the industrialisation of perovskite silicon tandem solar cells”.
September 2, 2025
The Fraunhofer Institute for Solar Energy Systems (ISE) will build a pilot solar cell line in Germany to support US manufacturer Talon PV’s efforts to establish solar cell capacity in the US.
August 27, 2025
Long-term procurement decisions from the US solar industry could support US solar manufacturing, regardless of changes to federal tax credits, PV Tech has heard.
August 26, 2025
US-based solar module manufacturer Bila Solar will include US-made steel module frames in its 550W dual-glass products.
August 21, 2025
JA Solar's CTO, Zi Ouyang, discusses the company's latest module technologies and why the future is tandem.
August 18, 2025
Australia’s sole PV producer Tindo Solar has launched a new range of n-type TOPCon modules aimed at rooftop applications.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines